
i

Declaration of Authorship

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig
sowie ohne unerlaubte fremde Hilfe und ausschlieÿlich unter Verwendung der aufge-
führten Quellen und Hilfsmittel angefertigt habe.

Berlin, den 06.11.2019





Technische Universität Berlin

Masters Thesis

Rough McKean Vlasov Equations

Author:

Nikolai Bobenko

Supervisor:

Dr. Peter Friz

A thesis submitted in ful�llment of the requirements

for the degree of Master of Science

in the

Study Group Probability Theory and Mathematical Finance

Mathematics and Natural Sciences

November 7, 2019

https://www.tu-berlin.de
http://www.bobrip.me
http://page.math.tu-berlin.de/~friz/
https://www.math.tu-berlin.de/?53237
https://www.naturwissenschaften.tu-berlin.de/menue/fakultaet_ii/parameter/en/




iii

TECHNISCHE UNIVERSITÄT BERLIN

Abstract

Probability Theory and Mathematical Finance
Mathematics and Natural Sciences

Master of Science

Rough McKean Vlasov Equations

by Nikolai Bobenko

McKean-Vlasov equations enable analysis of large particle systems with interactions.
We consider such systems with rough drivers and interactions only in the drift com-
ponent. Following the approach laid out in [7] we extend the results of Cass-Lyons
to the case of non-linear interactions in law using the techniques of controlled rough
paths. This pathwise controlled approach shows promise and has been proven to be
extendable to more general settings for example in [1]. We show existence of solutions,
continuity of the solution map and a convergence speed result.
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Zusammenfassung

Probability Theory and Mathematical Finance
Mathematics and Natural Sciences

Master of Science

Rough McKean Vlasov Equations

von Nikolai Bobenko

McKean-Vlasov Gleichungen ermöglichen die Analyse von dynamischen Systemen mit
groÿen Anzahlen von Teilchen. In dieser Arbeit betrachten wir solche stochastischen
Systeme mit rough Path Input und Interaktion nur in der Driftkomponente. Wir fol-
gen der Herangehensweise in [7] und erweitern die darin vorgestellten Resultate auf
nicht-lineare Interaktionen in der Verteilung, indem wir die Methoden der Controlled
Rough Paths verwenden. Ein solcher pfadweiser Ansatz liefert Resultate, die mithilfe
anderer Methoden auÿer Reichweite zu liegen scheinen und wurde in [1] verallgemein-
ert um auch Interaktion in der Di�usion zuzulassen. In dieser Arbeit zeigen wir Exis-
tenz der Lösung, Stetigkeit der Lösungfunktion und ein Konvergenzgeschwindigkeit-
sresultat.
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Chapter 1

Introduction

Systems of a random set ofN particles (Y i)i∈{1,...,N} that evolve according to dynamics
with pairwise interactions of the type

dY i
t (ω) =

1

N

N∑
j=1

g
(
Y i
t (ω), Y j

t (ω)
)
dt+

1

N

N∑
j=1

f
(
Y i
t (ω), Y j

t (ω)
)
dXi

t(ω) (1.1)

with i.i.d. starting conditions and Xi independent input processes have been studied
extensively. It has been shown in [21] and others that for X a semi-martingale such a
system exhibits propagation of chaos properties. That is for N → ∞ each particle's
behaviour can be approximated in law by the solution to a non-linear equation

dYt = g(Yt,L(Yt))dt+ f(Yt,L(Yt))dXt. (1.2)

Here L(Yt) denotes the law of Yt and both g and f are presumed to be Lipschitz
in their respective law components with regard to the 2-Wasserstein metric. The
signi�cance of such results lies in giving us suitable approximations that allow us to
reason about some large particle systems that defy direct analysis.

Trying to extend the type of input processes for which solutions can be found, Cass
and Lyons [7] study a rough setup with weak interactions. That is f(y, µ) = f(y)
independent of the measure argument with an input process X : Ω → Cg where
Cg is a suitable rough path space further de�ned in section 1.2. Using rough path
techniques, existence of solution and propagation of chaos results are proven under
speci�c integrability conditions for X. We apply the controlled rough path techniques
introduced by Gubinelli [17] to expand these results allowing g to be Lipschitz in
the measure thus expanding the linearity assumption imposed in [7]. The pathwise
approach chosen furthermore naturally allows one to drop the previsibility and semi-
martingale conditions imposed on the input driver in [21].

In [1] Bailleul, Catelier and Delarue consider a general setup

dYt = f(Yt,L(Yt))dXt.

for a random rough path valued driver X. Regularity assumptions in the law variable
are leveraged to introduce mixed �nite-in�nite dimensional controlled rough paths
and again existence and propagation of chaos results are shown. This work is more
advanced than ours and yields more general results but we see value in the simplicity
of the theory that comes with not considering interactions in the di�usion.

In all of the mentioned rough paths based approaches [1, 7] as well as in this
work the results rely fundamentally on limiting the permitted input noise to variables
with �nite exponential moments of the local accumulated variationN1 (De�nition 1.2).
This stems from the stability estimates of rough di�erential equations (RDEs) carrying
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an exponential term eCN1(wX) which when assumed to be integrable allows one to
control the Wasserstein distance of the law of solutions. Luckily [6] provides a large
family of processes for which that is the case. While this assumption ensures all the
results mentioned above it is not clear whether it is in any way sharp or could be
weakened substantially.

In [8] McKean-Vlasov equations with additive noise are considered. This extends
the theory since similarly to the case of ordinary di�erential equations (ODEs) with
additive noise there are no regularity assumptions imposed on the input driver other
than continuity. The setting is instructive due to its simplicity and permits proofs of
large deviations and central limit theorem type results.

McKean-Vlasov equations are encountered as limits of systems of interacting par-
ticles in several �elds. Some applications arise in �uid dynamics [20, 12, 2], mean �eld
games [5, 4] and economics [18].

In this work we extend the setting of [7] allowing for g to be Lipschitz rather than
linear in the measure, remain however in the realm of weak interactions. We show
existence, uniqueness and propagation of chaos results seen in a more general form
in [1] and show a strong rate of convergence result in Theorem 4.5 for the system of
particles.

We structure this thesis as follows. In chapter 1 we introduce relevant concepts
relating to rough path theory and show a few helpful lemmas along the way. Chap-
ter 2 is devoted to showing existence and uniqueness theorems for rough di�erential
equations with drift in a setting of controlled rough paths. We use these in chapter 3
to show the existence of solutions for McKean-Vlasov equations as well as continuity
of the solution map. Finally, in chapter 4 we show propagation of chaos results us-
ing the continuity of the solution map and prove an estimate for the strong rate of
convergence.

1.1 Hölder and p-variation spaces

Let (E, ‖·‖) be a Banach space. For T > 0 we denote by ∆T the two-simplex
∆T = {(s, t) | 0 ≤ s < t ≤ T}.

We denote by Cp−var2 ([0, T ], E) the space of all continuous maps X : ∆T → E for
which

‖X‖p−var,[0,T ] :=

 sup
π∈Π([0,T ])

∑
(ti)=π

∥∥Xti,ti+1

∥∥p 1
p

<∞.

Here Π(I) denotes the set of all �nite partitions of the set I.

De�nition 1.1. A continuous function w : [0, T ]2 → R+ is called a control if it is
superadditive, i.e.

w(s, t) ≥ w(s, u) + w(u, t) ∀ s < u < t ∈ [0, T ].

We call a control satisfying w(s, s) = 0, ∀ s ∈ [0, T ] regular.

For a function X ∈ Cp−var2 ([0, T ], E) we de�ne wX(s, t) := ‖X‖pp−var,[s,t]. It can be
seen that wX is indeed a control [16, Proposition 5.8]. Furthermore it is known that the

existence of a control w with Xs,t ≤ Cw(s, t)
1
p for all s, t implies wX(s, t) ≤ Cw(s, t)

[16, Proposition 5.10]. Therefore p-variation can also be equivalently de�ned as

‖X‖p−var,[s,t] = inf
{
w(s, t)

1
p | w is a control and ‖Xu,v‖ ≤ w(u, v)

1
p ∀ s ≤ u < v ≤ t

}
.
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We will neglect the interval and just write ‖X‖p−var when the interval is implied. We
will denote by wid the control given by wid(s, t) = |t− s|.

We will use the following construction for a greedy partition and local accumulated
variation in the later chapters to ensure integrability.

De�nition 1.2. For a control w for some �xed β > 0 we de�ne the greedy β-partition
{τn}n by setting

τ0 = s, τn = inf{t | w(τn−1, t) ≥ β, τn−1 < t < T} ∧ T.

Let N be the size of this partition. We then have w(τn−1, τn) = β, ∀n < N and
w(τN−1, τN ) ≤ β. Furthermore we de�ne the local accumulation of w as

Nβ(w, [s, t]) := sup{n ≥ 0 | τn < t}.

Following the discussion in [15, Chapter 11] it is known that for lifted Brownian
motion B with control wB the amount of greedy partition increments Nβ(wB, [0, T ]) is

exponentially integrable. In contrast the random variable |||B|||
1
α
α is not exponentially

integrable.
For some α > 0 we de�ne Cα2 ([0, T ], E) to be the space of all α-Hölder functions.

That is all functions X : ∆T → E with

‖X‖α := sup
t,s∈[0,T ]

‖Xs,t‖
|t− s|α

<∞.

We associate a path X : [0, T ]→ E with its increment function

Xc : (s, t) 7→ Xt −Xs

and de�ne ‖X‖α = ‖Xc‖α as well as ‖X‖p−var,[s,t] = ‖Xc‖p−var,[s,t]. We denote the
corresponding path spaces as Cα([0, T ], E) and Cp−var([0, T ], E) respectively.

The following well known lemma provides a connection between local and global
Hölder norms.

Lemma 1.3. Let X : [0, T ]→ E be a path, α ∈ (0, 1] and h > 0 with

‖X‖α,h := sup
0≤s<t≤T
t−s≤h

|Xs,t|
|t− s|α

≤ ∞.

Then we have
‖X‖α ≤ ‖X‖α,h

(
1 ∨ 2hα−1

)
.

For a proof see e.g. [15, Exercise 4.24].

1.2 Rough Paths

There are many comprehensive expositions to the topic of Rough Paths that do well
introducing and motivating the subject. We refer the reader to [15, 16] and will only
present some basic notions here.

Let p ∈ [2, 3). We call a pair

X = (X,X) ∈ Cp−var([0, T ], E)× C
p
2
−var

2 ([0, T ], E ⊗ E)



4 Chapter 1. Introduction

that satis�es Chen's relation

Xs,t − Xs,u − Xu,t = Xs,u ⊗Xu,t ∀ s, u, t (1.3)

a p-rough path. We denote the set of all such pairs by C p−var([0, T ], E) and equip it
with the homogeneous p-variation metric given by

%p−var,[0,T ](X
1,X2) =

∥∥X1 −X2
∥∥
p−var,[0,T ]

+
√
‖X1 − X2‖p−var,[0,T ] .

Note that this is not a linear space but the corresponding norm |||·|||p−var :=

%p−var(·, 0) behaves well under the natural dilation operation in C p−var given by
(X,X) 7→ (λX, λ2X).

For a path of bounded variation Z : [0, T ]→ E there exists a canonical lift given
via the well de�ned Riemann-Stieljes integral Zs,t =

∫ t
s Zs,u ⊗ dZu. With the second

level de�ned this way it is easy to check that Z = (Z,Z) satis�es Chen's relation (1.3).
We denote by C p−var

g ([0, T ], E) the set of geometric rough paths, that is the closure
of lifted paths of bounded variation under |||·|||p−var.

Geometric rough paths on Re can be identi�ed with paths taking values in a
Lie-Group G(2)(Re) that have �nite p-variation with respect to the corresponding
Carnot-Carathéodory metric dCC . With this in mind for X ∈ C p−var

g ([0, T ],Re) we
have

|||X|||p−var,[0,T ] = sup
π∈Π([0,T ])

∑
(ti)=π

dCC(Xti ,Xti+1)p.

For some α ∈ (1
3 ,

1
2 ] we call X = (X,X) an α-Hölder rough path if it satis�es

Chen's relation and
‖X‖α ∨ ‖X‖2α <∞.

We denote the space of such paths by C α with the associated homogeneous norm
|||X|||α := ‖X‖α +

√
‖X‖2α .

Controlled Rough Paths

For a path X ∈ Cp−var([0, T ],Re) we say that

(Y, Y ′) ∈ Cp−var([0, T ],Rd)× Cp−var([0, T ],L(Re,Rd))

is controlled by X if for the remainder term given by

Y #
s,t = Ys,t − Y ′sXs,t

we have Y # ∈ C
p
2
−var. This notion was �rst introduced by Gubinelli [17] in the Hölder

setting but also makes sense in the p-variation setting. We will write (Y, Y ′) ∈ D
p
2
X

for a pair satisfying this condition.
There is a canonical way in which smooth enough functions preserve controlled

paths. This is made concrete in the following lemma and in some situations allows
one not to provide Y ′ explicitly as it is implicitly derived from context.

Lemma 1.4. Let f ∈ C2
b , X ∈ Cp−var and (Y, Y ′) ∈ D

p
2
X with controls wY , wY # . Then

(f(Y )t, f(Y )′t) = (f(Yt), Df(Yt)Y
′
t ) is also an element of D

p
2
X and for all s, t ∈ [0, T ]
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there exists a constant C depending only on f such that

wf(Y )(s, t) ≤ CwY (s, t)

wf(Y )#(s, t)
2
p ≤ C(wY (s, t)

2
p + wY #(s, t)

2
p )

Proof. First we note that f(Y ) and f(Y )′ are controlled by the following quantities.

|f(Y )s,t| ≤ ‖Df‖∞ |Ys,t| ≤ CwY (s, t)
1
p

|f(Y )′s,t| ≤ |Df(Ys)Y
′
s −Df(Ys)Y

′
t |+ |Df(Ys)Y

′
t −Df(Yt)Y

′
t |

≤ ‖Df‖∞ |Y
′
s,t|+

∥∥Y ′t ∥∥∞ ∥∥D2f
∥∥
∞ |Ys,t|.

Thus both f(Y ) and f(Y )′ are in Cp−var. For the remainder we have

|f(Y )#
s,t| = |f(Y )t − f(Y )s −Df(Ys)Y

′
sXs,t|

≤ |f(Y )t − f(Y )s −Df(Ys)Ys,t|+ |Df(Ys)Y
#
s,t|

≤ 1

2

∥∥D2f
∥∥
∞ |Ys,t|

2 + ‖Df‖∞ |Y
#
s,t|

≤ C(wY (s, t)
2
p + wY #(s, t)

2
p ).

Hence we get a control wf(Y )#(s, t) ≤ C(wY (s, t) + wY #(s, t)) with |f(Y )#
s,t| ≤

wf(Y )#(s, t)
2
p and the result follows.

Rough Path Integration

The sewing lemma is the main result used to de�ne and obtain estimates for rough
path integration. We could not �nd this explicit version of the sewing lemma in the
literature therefore include it here for completeness. For a Banach space V and a
function Ξ : ∆T → V we write δΞs,u,t := Ξs,t − Ξs,u − Ξu,t which is used to measure
how close Ξ is to being additive in time which is clearly a property we want to impose
for any integral notion.

Lemma 1.5. Let V be a Banach space and β > 1. For a function Ξ : ∆T → V let
there be a control w such that for all 0 ≤ s < u < t ≤ T we have

‖δΞs,u,t‖ ≤ wβ(s, t).

Then there exists a unique element I(Ξ) : [0, T ]→ V such that there exists a constant
C depending only on β with

‖Ξs,t − I(Ξ)s,t‖ ≤ Cwβ(s, t)

for all s < t in [0, T ]. Furthermore we have

I(Ξ)s,t = lim
|π|→0

∑
[ti,ti+1]∈π

Ξti,ti+1

where π is a partition of [s, t] and |π| denotes the size of its largest element.

Proof. This proof is a modi�cation of the classical Young argument.
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Let π be a partition on [s, t] consisting of a total of r ≥ 1 intervals. Then for r ≥ 2
there exists a u ∈ [s, t] such that [u−, u], [u, u+] ∈ π and

w(u−, u+) ≤ 2

r − 1
w(s, t).

Otherwise one would get 2w(s, t) ≥
∑

u∈πo > 2r
r−1w(s, t) > 2w(s, t).

We use the notation
∫
π Ξ :=

∑
[u,v]∈π Ξu,v. For our choice of u ∈ π it follows that∥∥∥∥∥

∫
π\{u}

Ξ−
∫
π

Ξ

∥∥∥∥∥ =
∥∥δΞu−,u,u+∥∥ ≤ wβ(u−, u+) ≤

(
2

r − 1

)β
wβ(s, t).

By iterating this procedure down to the trivial partition {[s, t]} we arrive at∥∥∥∥Ξs,t −
∫
π

Ξ

∥∥∥∥ ≤ ∞∑
r=1

(
2

r

)β
w(s, t)β = 2βζ(β)w(s, t)β (1.4)

where ζ denotes the Riemann zeta function. Now consider a partition πε on [0, T ]
such that for any [u, v] ∈ πε we have |u− v| ∨ w(u, v) < ε. Then for any subpartition
π ⊃ πε we have ∥∥∥∥∫

πε

Ξ−
∫
π

Ξ

∥∥∥∥ =
∑

[u,v]∈πε

∥∥∥∥∥Ξu,v −
∫
π∩[u,v]

Ξ

∥∥∥∥∥
≤ 2βζ(β)

∑
[u,v]∈πε

w(u, v)β

≤ 2βζ(β)
T

ε
εβ

∈ O(εβ−1).

Therefore, there exists a K ∈ V such that for any ε > 0 there exists a partition πε
such that for any subpartition π ⊃ πε we have

∥∥∫
π Ξ−K

∥∥ ≤ ε.
Let π now be some partition on [0, T ] with |π| ≤ |πε|. Then we observe that∥∥∥∥∫

π
Ξ−K

∥∥∥∥ ≤ ∥∥∥∥∫
π

Ξ−
∫
π∨πε

Ξ

∥∥∥∥+

∥∥∥∥∫
π∨πε

Ξ−K
∥∥∥∥

≤ Cεβ−1 + ε.

Thus we have convergence. Uniqueness of I(Ξ) follows by considering two sequences
of partitions (πn), (π′n) for which

∫
πn

Ξ and
∫
π′n

Ξ both converge. Then the sequence

of their re�nements given by π̃n = πn ∧ π′n also converges. It is easy to see that by
the de�nition of our convergence the limits agree, hence we get uniqueness.

We use Lemma 1.5 to de�ne integration of controlled rough paths against the
paths they are controlled by. Let p ∈ [2, 3). Given a rough path X ∈ C p−var and a

controlled path (Y, Y ′) ∈ D
p
2
X([0, T ], V ) we set the local expansion

Ξs,t = YsXs,t + Y ′sXs,t

de�ned in coordinates by Ξis,t = (Ys)
i
j (Xs,t)

j + (Y ′s )ij,k (Xs,t)j,k written in Einstein
notation. Using Chen's relation it is now easily checked that there exists a control w
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with |δΞs,u,t| < w(s, t)
3
p allowing us to apply the sewing lemma to de�ne

∫
Y dX :=

I(Ξ). We think of Y as the �rst order local expansion of
∫
Y dX.

In fact this gives us the following corollary.

Corollary 1.6.∣∣∣∣∫ t

s
Yr − YsXs,t − Y ′sXs,t

∣∣∣∣ ≤ C (wX(s, t)
1
pwY #(s, t)

2
p + wX(s, t)

2
pwY (s, t)

1
p

)
Proof. This is a direct consequence of Lemma 1.5 applied to Ξs,t = YsXs,t + Y ′sXs,t.
A simple application of Chen's relation then yields

δΞs,θ,t = −Y #
s,uXu,t − Y ′s,uXu,t .

By observing that indeed

w1(s, t) := wY #(s, t)
2
3wX(s, t)

1
3 + wX(s, t)

2
3wY (s, t)

1
3

is a control that satis�es |δΞs,u,t| ≤ Cw1(s, t)
3
p we can apply the sewing lemma and

the claim follows.

The following rough Grönwall lemma is a modi�ed version of [10, Lemma 2.11]
which allows us to advance from local to global estimates. The only di�erence to [10]
is that there is no requirement for φ to be a control - we only assume it to be bounded
by φ(0, T ). This proof will appear in an upcoming version of [9].

Proposition 1.7 (Rough Grönwall). Let W : [0, T ] → R+ be a function. If there
exist constants L > 0 and κ > 0, a regular control w and a function φ : ∆T → R+

with φ(s, t) ≤ φ(0, T ) such that for all 0 ≤ s < t ≤ T with w(s, t) ≤ L we have

Ws,t ≤ w(s, t)
1
κ sup

0≤r≤t
Wr + φ(s, t) (1.5)

then for α := 1 ∨ L−1(2e2)−κ we have

sup
0≤t≤T

Wt ≤ 2e
2w(0,T )
Lα (W0 + φ(0, T )).

Proof. We build a partition of size K such that αL(K − 1) ≤ w(0, T ) ≤ αLK. Let us
de�ne this partition 0 = t0 < t1 < t2 < . . . < tK = T via

w(0, tk) = αkL, ∀k = 0, 1, . . . ,K − 1.

Since w is continuous and 0 at the diagonal this is well de�ned. Superadditivity of w
then implies w(tk, tk+1) ≤ αL. For a �xed t ∈ [tk, tk+1] by plugging in the assumption
(1.5) we then get

W0,t =

k−2∑
i=0

Wti,ti+1 +Wtk−1,tk

≤
k−1∑
i=0

w(ti, ti+1)
1
κ ‖W‖∞,[0,ti+1] +

k−2∑
i=0

φ(ti, ti+1) + φ(tk−1, tk)

≤ (αL)
1
κ

k−1∑
i=0

‖W‖∞,[0,ti+1] + kφ(0, T ).

(1.6)
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By now introducing the function

Mt = ‖W‖∞,[0,t] e
−w(0,t)

αL

we get by the de�nition of our partition (ti)

k−1∑
i=0

‖W‖∞,ti+1
=

k−1∑
i=0

Mti+1e
w(0,t)
αL ≤ ‖M‖∞,[0,tk]

k−1∑
i=0

ei+1 ≤ ‖M‖∞,[0,tk] e
k+1.

Since the right hand side of (1.6) is independent of t ∈ [tk−1, tk] we can plug this back
into it and get

‖W‖∞,[tk−1,tk] ≤W0 + (αL)
1
κ ‖M‖∞,[0,tk] e

k+1 + kφ(0, T ) =: Bk .

Since the right side here is monotone in k this gives us as a consequence that in fact

‖W‖∞,[0,t] ≤ Bk. Multiplying this inequality by e−
w(0,t)
αL then implies

Mt = ‖W‖∞,[0,t] e
−w(0,t)

αL ≤ e−
w(0,t)
αL Bk

which gives us

‖M‖∞,[0,tk] ≤ e
−w(0,t)

αL Bk ≤W0 + (αL)
1
κ e2 ‖M‖∞,[0,tk] +Kφ(0, T ).

Now the de�nition of α ensures that (αL)
1
κ e2 ≤ 1

2 and we get

‖M‖∞,[0,t] ≤ 2(W0 +Kφ(0, T ))

which implies

‖W‖∞,[0,T ] ≤ e
w(0,T )
αL 2(W0 +Kφ(0, T )).

Since K was chosen to satisfy K ≤ w(0,T )
αL + 1 ≤ e

w(0,T )
αL , the result follows.

There is the obvious connection between N1(wX , [0, T ]) and wX(0, T ) given by

N1(wX , [0, T ]) ≤ wX(0, T ) + 1 (1.7)

which follows directly from the superadditivity of wX . Estimates going the other way
are less obvious.

The following lemma will be used to estime the p-variation metric of rough paths
by its local accumulation.

Lemma 1.8. For any X ∈ C p−var
g (Re) we have

|||X|||pp−var = wX(0, T ) ≤ CpeCpN1(wX ,[0,T ]).

Proof. For a geometric rough path X the homogeneous p-variation norm can be iden-
ti�ed with

|||X|||pp−var,[0,T ] = sup
π∈Π([0,T ])

∑
(ti)=π

dCC(Xti ,Xti+1)p

where dCC denotes the Carnot-Carathéodory metric on G(2)(Re). We will write∥∥Xti,ti+1

∥∥ to indicate dCC(Xti ,Xti+1).
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Consider a �xed partition of [0, T ] given by D = (ti)i∈{0,...n}. For a �xed i let
(τ ij)j∈{0,...Ni} be the 1-greedy partition on [ti−1, ti]. That is τ0 = ti−1 and

τ ij = inf
{
t > τ ij−1 | w(τ ij−1, t) = 1

}
∧ tj .

Since the greedy partition has Ni := N1(w, [ti−1, ti]) + 1 elements, i.e. τNi = ti we
have

∥∥Xti−1,ti

∥∥p ≤
 Ni∑
j=1

∥∥∥Xτ ij−1,τ
i
j

∥∥∥
p

≤ (Ni)
p−1

Ni∑
j=1

∥∥∥Xτ ij−1,τ
i
j

∥∥∥p
≤ (N1(w, [0, T ]) + 1)p−1

Ni∑
j=1

∥∥∥Xτ ij−1,τ
i
j

∥∥∥p .
By summing up over our entire partition we get

n∑
i=1

∥∥Xti−1,ti

∥∥p ≤ (N1(w, [0, T ]) + 1)p−1
n∑
i=1

Ni∑
j=1

∥∥∥Xτ ij−1,τ
i
j

∥∥∥p
≤ (N1(w, [0, T ]) + 1)p−1 sup

D([0,T ])
w(ti−1,ti)≤1

∑
[tj−1,tj ]∈D([0,T ])

w(tj−1, tj)

≤ 2(N1(w, [0, T ]) + 1)p

where in the last step we used [6, Proposition 4.11]. Since the right hand side is now
independent of the partition D we can take the supremum over all partitions. Then
using xe ≤ ex ∀x > 0 which implies xp ≤ e

p
e
x we get

|||X|||pp−var ≤ 2e
p
e e

p
e
N1(wX ,[0,T ])

which is the claimed result.

1.3 Notation

Here is a collection of notation we use throughout this work.

• We use C as a constant that is independant of whatever the context ask it to be
independent of. When we want to indicate its dependencies explicitly we do so
via subscripts. The constant may change from line to line without extra notice.
We try to �rst write out terms clearly before hiding them in the constant.

• By δx we denote the dirac delta on x.

• As is customary we use ω to indicate the random parameter and w when talking
about controls. The reader is advised to take care not to confuse the two.

• We use the notation W (q)
E to indicate the q-Wasserstein distance on Pq(E), the

space of probability measures on E with �nite q-th moment. See Appendix A
for a summary of relevant properties.
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• For a controlled path (Y, Y ′) ∈ D
p
2
X we write the remainder of second kind as

Y #
s,t := Ys,t − Y ′sXs,t

and the remainder of third kind as

Y \
s,t := Ys,t − Y ′sXs,t − Y ′′s Xs,t

when it is clear how Y ′′ is de�ned. Note that in the case Y ′ = f(Y ) we have
Y ′′s = f(Y )′s = Df(Ys)Y

′
s as explained in Lemma 1.4.
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Chapter 2

Controlled RDEs With Drift

In this chapter we discuss rough di�erential equations with a drift component. We will
proceed to show a priori estimates for solutions and show existence and uniqueness
of solutions. This is a deterministic theory and no randomness will be considered at
this point.

2.1 Preliminaries

General solution theory for di�erential equations with rough driver is well understood
and can be found in e.g. [15] and [16].

Let again p ∈ [2, 3). We are interested in solutions to equations of the form

dYt = g(Yt, t)dt+ f(Yt)dXt (2.1)

for some well behaved functions g and f and X ∈ C p−var a rough path. Note that
g depends on both Y and t whereas f only depends on Y . This is enough for our
application so we restrict our attention to this case. Including a dependence on t for f
is possible but requires one to assume f(y, ·) to have �nite p

2 -variation. However this
is not implied as a consequence of the McKean-Vlasov equations studied in chapter 3
thus is of no interest to us.

Clearly, one can consider (Xt, t) as a rough path by adding the remaining cross-
integrals (X,

∫
X dt,

∫
t dX,

∫
t dt). Here the second and third entry are interpreted as

Riemann-Stieltjes integrals. This allows us to apply the standard theory seen e.g. in
[15, 16] to gain a solution Ỹ = (Yt, t) to the modi�ed problem

dỸt = f̃(Yt, t)dX̃t

with f̃i = (fi, 0)∀i ∈ {1 . . . d} and f̃d+1 = (g, 1). Taking the projection onto Y then
gives us both existence and uniqueness conditions for our problem. The condition
f̃ ∈ C3

b ensures global existence of that unique solution. This however forces f̃ to be
in C3 jointly in y and t which is not a reasonable assumption in light of (1.2). For
this reason we will consider the theory of rough di�erential equations with a drift
component here.

2.2 A Priori Estimates

We are looking for solutions to di�erential equations of the form (2.1).

De�nition 2.1. Let g be measurable and bounded, f ∈ C2
b , Y0 ∈ Rd some initial

condition and X ∈ C p−var([0, T ],Re). Then we say (Y, Y ′) ∈ D
p
2
X is a solution to (2.1)
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if for all t in [0, T ] we have

Yt = Y0 +

∫ t

0
g(Yr, r)dr +

∫ t

0
f(Yr)dXr .

Here f(Y ) is interpreted as an element of D
p
2
X via Lemma 1.4.

In the following we will need a priori estimates for solutions to RDEs with drift.
Note that these bounds only require f ∈ C2

b whereas the existence theorem assumes
f ∈ C3

b .

Proposition 2.2 (Local A Priori Estimate). Let (Y, Y ′) be a solution to the RDE (2.1)
in the sense of De�nition 2.1 with f ∈ C2

b , g measurable and bounded and X ∈ C p−var.

Let wX be the smallest control such that |Xs,t| ≤ wX(s, t)
1
p and |Xs,t| ≤ wX(s, t)

2
p for

all s, t ∈ [0, T ]. Then for all s, t small enough such that C(wX(s, t)
1
p + |t− s|) ≤ 1

2 for
some constant C we have

• wY (s, t)
1
p ≤ C

(
wX(s, t)

1
p + |t− s|

)
,

• wY #(s, t)
2
p ≤ C

(
wX(s, t)

2
p + |t− s|

)
and

• wY \(s, t)
3
p ≤ C

(
wX(s, t)

3
p + |t− s|

)
.

Proof. We de�ned the rough integral via the sewing lemma Lemma 1.5 which com-
bined with Lemma 1.4 gives us

|Y \
s,t| =

∣∣∣∣∫ t

s
f(Yr)dXr − f(Ys)Xs,t − f(Y )′sXs,t

∣∣∣∣
≤ C

(
wX(s, t)

1
pwf(Y )#(s, t)

2
p + wX(s, t)

2
pwf(Y )(s, t)

1
p

)
≤ C(wX(s, t)

1
p (wY (s, t)

2
p + wY #(s, t)

2
p ) + wX(s, t)

2
pwY (s, t)

1
p ).

(2.2)

By de�nition we have

|Y #
s,t| = |f(Y )′sXs,t +

∫ t

s
g(Yr, r)dr + Y \

s,t| ≤ C
(
wX(s, t)

2
p + |t− s|+ wY \(s, t)

3
p

)
thus giving us

|Ys,t| = |Y ′sXs,t + Y #
s,t| ≤ C

(
wX(s, t)

1
p + |t− s|+ wX(s, t)

2
p + wY \(s, t)

3
p

)
.

Plugging this back into Equation 2.2 we get

|Y \
s,t| ≤ wY \(s, t)

3
p ≤ C

(
wX(s, t)

2
p (wX(s, t)

1
p + |t− s|+ wY \(s, t)

3
p )

+ wX(s, t)
1
p (wX(s, t)

2
p + |t− s|2 + wY \(s, t)

6
p )

+ wX(s, t)
1
p (wX(s, t)

2
p + |t− s|+ wY \(s, t)

3
p )
)

≤ C
(
wX(s, t)

3
p + |t− s|+ wX(s, t)

1
p (wY \(s, t)

3
p + wY \(s, t)

6
p )
)
.
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Thus for s, t such that CwX(s, t)
1
p ≤ 1

2 and multiplying with CwX(s, t)
1
p we have

wY \(s, t)
3
p ≤ C

(
wX(s, t)

3
p + |t− s|+ wX(s, t)

1
pwY \(s, t)

6
p

)
=⇒ As,t ≤ λs,t +A2

s,t

for As,t := CwX(s, t)
1
pwY \(s, t)

3
p and λs,t := C(wX(s, t)

4
p + wX(s, t)

1
p |t− s|).

Now clearly for |t− s| small enough such that As,t < 1
2 we get As,t ≤ 2λs,t which

yields our result. However we want that choice of |t− s| to be made independently of
Y . This can be seen to be possible in the following way.

For s, t such that λs,t < 1
4 we get

A2
s,t −As,t ≥ λs,t ⇐⇒


√

1
4 − λs,t ≤ As,t −

1
2√

1
4 − λs,t ≤ −As,t + 1

2

⇐⇒

As,t ≥
1
2

As,t ≤ 1
2 −

√
1
4 − λs,t

|t−s|→0−−−−−→ 0.

Since As,t is monotone and we know that it goes to 0 for |t− s| → 0 we have that for
all s, t with λs,t ≤ 1

8 it holds that As,t ≤ 1
4 . This gives us

As,t ≤ Cλs,t

=⇒ wY \(s, t)
3
p ≤ C(wX(s, t)

3
p + |t− s|).

Plugging this back into the above estimates and using wX(s, t) ≤ 1 yields the
claimed result.

Along the way we used λs,t ≤ 1
8 . We see that there exists a C such that

C(wX(s, t)
1
p + |t− s|) ≤ 1

2 implies λs,t ≤ 1
8 .

From this we get a straight forward global a priori estimate in the α-Hölder norm.

Corollary 2.3 (Global A Priori Estimate). For X ∈ C α for some α ∈ (1
3 ,

1
2 ] and

(Y, Y ′) as above the solution to Equation 2.1 we have for h > 0 small enough

‖Y ‖α,h ≤ C
(
|||X|||α,h + h1−α

)
. (2.3)

As a consequence we get the global estimate

‖Y ‖α ≤ C
(
|||X|||α + |||X|||1−

1
α

α ∨ |||X|||
1
α
α + 1

)
. (2.4)

For both estimates C depends only on α.

Proof. For X we know wX(s, t) ≤ |||X|||pα,h|t − s| for any |t − s| ≤ h. Thus the

assumption from Proposition 2.2 is satis�ed for h small enough such that CwX(s, t)
1
p ≤

C|||X|||α,h|t−s|α ≤
1
2 holds. Pick such an h. Then for |t−s| ≤ h using Proposition 2.2

we have
|Ys,t| ≤ C(wX(s, t)

1
p + |t− s|) ≤ C(|||X|||α|t− s|

α + |t− s|).

This gives us Equation 2.3.
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By choosing h ' |||X|||−
1
α

α we get hα−1 ' |||X|||
1
α
−1

α and thus by applying Lemma 1.3
we have

‖Y ‖α ≤ ‖Y ‖α,h
(
1 ∨ 2hα−1

)
≤ C

(
|||X|||α,h + h1−α

) (
1 ∨ 2hα−1

)
≤ C

(
|||X|||α + |||X|||1−

1
α

α ∨ |||X|||
1
α
α + 1

)
.

We can bound any solution Y via the control wX in the following way.

Corollary 2.4. Under the conditions of Proposition 2.2 there exists a universal con-
stant C for which we get

‖Y ‖∞,[0,T ] ≤ |Y0|+ C (wX(0, T ) + T ) .

Proof. Note that the local a priori estimates in Proposition 2.2 give us for any such
Y

‖Y ‖∞,[s,t] ≤ |Ys|+ wY (s, t)
1
p ≤ |Ys|+ C(wX(s, t)

1
p + |t− s|)

for |t− s| such that CwX(s, t)
1
p ≤ 1

2 . Thus building the greedy partition (ti) over X
given inductively by

ti+1 = inf{ti < t < T | CwX(ti, t)
1
p ≥ 1

2
} ∧ T

we get

‖Y ‖∞,[0,T ] ≤ |Y0|+

N 1
(2C)p

(wX ,[0,T ])∑
i=1

wYi(ti, tt+1)
1
p

≤ |Y0|+ C


N 1

(2C)p
(wX ,[0,T ])∑
i=1

wX(ti, ti+1)
1
p + T



≤ |Y0|+ C(N 1
(2C)p

(wX , [0, T ]))
p−1
p


N 1

(2C)p
(wX ,[0,T ])∑
i=1

wX(ti, ti+1)


1
p

+ CT

≤ |Y0|+ C (wX(0, T ) + T ) .

Here in the last step we used

N 1
(2C)p

(wX , [0, T ]) ≤ (2C)pN1(wX , [0, T ]) ≤ (2C)pwX(0, T ).
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2.3 Stability Estimates

After showing our a priori estimates for solutions of RDEs with drift we will now
concern ourselves with stability estimates. In the spirit of rough paths we will see
that the solution map is locally Lipschitz with respect to input noise and changes in
functions g, f . We will then later use this to show well-posedness and propagation of
chaos for the McKean-Vlasov equation.

Proposition 2.5. Let X ∈ C p−var be a rough path with wX the smallest control such

that |Xs,t| ≤ wX(s, t)
1
p , |Xs,t| ≤ wX(s, t)

2
p . Let dYt = g1(t, Yt)dt + f(Yt)dXt and

dZt = g2(t, Zt)dt + f(Zt)dXt be two solutions to RDEs with the two drift functions
g1, g2 and initial conditions ξ1, ξ2. We de�ne w1(s, t) = wX(s, t) + |t− s|.

Assume f ∈ C3
b and that there exists a constant L such that

1. |g1(t, y)− g2(t, z)| ≤ L(|z − y|+ kt) for some measurable function k and

2. |gi(t, y)| ≤ L for i = 1, 2.

Then there exists a constant C such that for Wt = Yt−Zt we have for any [s, t] ⊆
[0, T ]

‖W‖∞,[s,t] ≤ Ce
CN1(w1,[s,t])

(
|Ws|+

∫ t

s
krdr

)
(2.5)

and for s, t small enough such that Cw1(s, t) ≤ 1
2 we have

|Ws,t| ≤ CeCN1(w1,[0,T ])(|Ws|+
∫ t

s
krdr). (2.6)

Proof. We will use the notation ∆ = f(Y )− f(Z).
First, we have

Ws,t = (f(Ys)− f(Zs))Xs,t + Y #
s,t − Z

#
s,t

and thus
|Ws,t| ≤ ‖f‖C1 |Ws|wX(s, t)

1
p + wW#(s, t)

2
p . (2.7)

For W# we have

W#(s, t) =
(
f(Y )′s − f(Z)′s

)
Xs,t +

∫ t

s
g1(r, Yr)− g2(r, Zr)dr

+

(∫ t

s
f(Yr)− f(Zr)dXr − (f(Ys)− f(Zs))Xs,t −

(
f(Y )′s − f(Z)′s

)
Xs,t

)
=
(
f(Y )′s − f(Z)′s

)
Xs,t +

∫ t

s
g1(r, Yr)− g2(r, Zr)dr

+

(∫ t

s
∆rdXr −∆sXs,t −∆′sXs,t

)
.

By using Corollary 1.6 this gives us

|W#(s, t)| ≤ ‖f‖C2 |Ws|wX(s, t)
2
p +K|t− s| sup

r∈[s,t]
|Wr|+

∫ t

s
krdr

+ wX(s, t)
1
pw∆#(s, t)

2
p + wX(s, t)

2
pw∆′(s, t)

1
p . (2.8)

By now providing estimates for |∆′(s, t)|, |∆#(s, t)| we can make progress.
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We have

|∆′s,t| = |f(Y )′s,t − f(Z)′s,t|
= |Df(Yt)Y

′
t −Df(Ys)Y

′
s −

(
Df(Zt)Z

′
t −Df(Zs)Z

′
s

)
|

= |Df(Wt)Y
′
t −Df(Ws)Y

′
s +Df(Zt)W

′
t −Df(Zs)W

′
s|

≤ ‖f‖C2 |Wt||Y ′s,t|+ ‖f‖C2 |Ws,t||Y ′s |+ ‖f‖C2 |W ′s,t|+ ‖f‖C2 |Zs,t||Ws|
≤ Cf (|Ws||Zs,t|+ |Wt||Ys,t|+ |Ws,t|)

≤ Cf

((
wX(s, t)

1
p + |t− s|

)
sup
r∈[s,t]

|Wr|+ wW (s, t)
1
p

)
.

Here in the last step we used the a priori estimates from Proposition 2.2. Furthermore

|∆#
s,t| = |∆s,t −∆′sXs,t|

= |f(Yt)− f(Ys)−Df(Ys)Ys,t −Df(Ys)Y
#
s,t

−
(
f(Zt)− f(Zs)−Df(Zs)Zs,t −Df(Zs)Z

#
s,t

)
|

≤ |f(Yt)− f(Ys)−Df(Ys)Ys,t − (f(Zt)− f(Zs)−Df(Zs)Zs,t) |

+ |Df(Ys)Y
#
s,t −Df(Zs)Z

#
s,t|

=: T1 + T2.

Now for estimating T1 and T2 separately we get

T1 = |
∫ 1

0

(
D2f(Ys + θYs,t)(Ys,t, Ys,t)−D2f(Zs + θZs,t)(Zs,t, Zs,t)

)
(1− θ)dθ|

≤ Cf
(
|Ws|(wX(s, t)

2
p + |t− s|) + wW (s, t)

1
p (wX(s, t)

2
p + |t− s|) + wW (s, t)

2
p

)
and

T2 ≤ |Df(Ys)||W#
s,t|+ |Df(Ys)−Df(Zs)||Z#

s,t|

≤ ‖f‖C1 |W#
s,t|+ ‖f‖C2 |Ws|(wX(s, t)

2
p + |t− s|)C

≤ wW#(s, t)
2
p + |Ws|(wX(s, t)

2
p + |t− s|).

Collecting these estimates and plugging them into (2.8) we get

|W#
s,t| ≤ C

(
|Ws|wX(s, t)

2
p + |Ws|(wX(s, t)

3
p + |t− s|) + wX(s, t)

1
p |Ws,t|2

+ wX(s, t)
2
p

(
(wX(s, t)

1
p + |t− s|) sup

r∈[s,t]
|Wr|+ wX(s, t)

2
p |Ws,t|

)

+ wX(s, t)
1
p |W#

s,t|+ |t− s| sup
r∈[s,t]

|Wr|+
∫ t

s
krdr

)
.

Thus for s, t such that CwX(s, t) ≤ 1
2 we get

|W#
s,t| ≤ C

(
(wX(s, t) + |t− s|p)

1
p sup
r∈[s,t]

|Wr|+ wX(s, t)
1
p |Ws,t|2

+ wX(s, t)
2
p |Ws,t|+

∫ t

s
krdr

)
.
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Plugging this back into (2.7) we get for s, t small enough such that Ws,t ≤ 1 via the
a priori estimates

|Ws,t| ≤ C
(

(wX(s, t) + |t− s|)
1
p sup
r∈[s,t]

|Wr|+ wX(s, t)
1
p |Ws,t|+

∫ t

s
krdr

)
(2.9)

and thus again for s, t small enough such that CwX(s, t)
1
p ≤ 1

2 we get

|Ws,t| ≤ C

(
w1(s, t)

1
p sup
r∈[s,t]

|Wr|+
∫ t

s
krdr

)
.

Now applying the rough Grönwall lemma Proposition 1.7 with w1(s, t) =
C (wX(s, t) + |t− s|p) and w2(s, t) = C

∫ t
s krdr we get

sup
r∈[s,t]

Wr ≤ C exp (Cw1(s, t)) (|Ws|+ w2(s, t))

for any interval [s, t] ⊂ [0, T ]. Crucially there is no assumption of small |t−s| imposed
here.

Now let {τn}n be the greedy partition of [s, t] introduced in De�nition 1.2 for w1

and β = 1. Due to w1(s, τ1) = 1 we then have

sup
r∈[s,τ1]

|Wr| ≤ CeC (|Ws|+ w2(s, τ1)) .

Equivalently we have for C ≥ 1 that

sup
r∈[τ1,τ2]

|Wr| ≤ CeC (|Wτ1 |+ w2(τ1, τ2))

≤ CeC
(
CeC (|Ws|+ w2(s, τ1)) + w2(τ1, τ2)

)
≤ C2e2C (|Ws|+ w2(s, τ2)) .

Thus via an induction we get

sup
r∈[τn,τn+1]

|Wr| ≤ CnenC (|Ws|+ w2(s, τn+1))

= en(C+ln(C)) (|Ws|+ w2(s, τn+1))

and hence for C̃ = C + ln(C) we have

sup
r∈[s,t]

|Wr| ≤ max
n<N1(w1,[s,t])

sup
r∈[τn,τn+1]

|Wr|

≤ eC̃N1(w1,[s,t]) (|Ws|+ w2(s, t))

giving us the claimed result (2.5) by setting [s, t] = [0, T ].
We can now go back and plug this back into (2.9) to obtain for s, t such that

Cw1(s, t) ≤ 1

|Ws,t| ≤ C
(
w1(s, t)

1
p eCN1(w1,[s,t]) (|Ws|+ w2(s, t)) + w2(s, t)

)
≤ CeCN1(w1,[s,t])(|Ws|+ w2(s, t))

≤ CeCN1(w1,[0,T ])(|Ws|+
∫ t

s
krdr)
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which is exactly (2.6).

We stress that (2.5) does not carry a smallness assumption for |t−s| whereas (2.6)
does.

Note that uniqueness of solution follows directly.
This shows stability under perturbation of the drift function g. In our case it will

also be important to have stability under change of the driving noise X. The above
result can easily be extended to include this in the following way.

Proposition 2.6. Let X, X̃ ∈ C p−var be two rough paths with wX the smallest control

such that |Xs,t| ≤ wX(s, t)
1
p , |Xs,t| ≤ wX(s, t)

2
p likewise wX̃ for X̃, f ∈ C3

b and
g1, g2 bounded functions Lipschitz in y. Let dYt = g1(t, Yt)dt + f(Yt)dXt and dZt =
g2(t, Yt)dt + f(Yt)dX̃t be two solutions to RDEs with the two drift functions g1, g2

driven by X, X̃ and initial conditions ξ1, ξ2. We de�ne w1(s, t) = wX(s, t)+wX̃(s, t)+

|t− s|, Q = X − X̃ and Q = X− X̃ with the corresponding control wQ.
Under the same assumptions as in Proposition 2.5 there exists a universal constant

C depending only on p such that for Wt = Yt − Zt and for any [s, t] ⊆ [0, T ] we have

‖W‖∞,[s,t] ≤ Ce
CN1(w1,[s,t])

(
|Ws|+ wQ(s, t)

1
p +

∫ t

s
krdr

)
. (2.10)

Furthermore for s, t small enough such that Cw1(s, t) ≤ 1
2 we have

|Ws,t| ≤ CeCN1(w1,[s,t])

(
|Ws|+ wQ(s, t)

1
p +

∫ t

s
krdr

)
. (2.11)

Proof. This proof works essentially the same way as the proof of Proposition 2.5. Some
changes need to be made to get the control estimates for Ws,t to then again apply the
rough Grönwall lemma. Mostly estimates of the form |ab− ãb̃| ≤ |a||b− b̃|+ |a− ã||b̃|
are used. We outline the argument without completing every single computation as
they are essentially the same as above.

We have

Ws,t = Y ′sXs,t − Z ′sX̃s,t +W#
s,t

=⇒ |Ws,t| ≤ |Y ′s ||Xs,t − X̃s,t|+ |Y ′s − Z ′s||X̃s,t|+ |W#
s,t|

≤ C|Qs,t|+ C|Ws||X̃s,t|+ |W#
s,t|.

Thus we need to �nd a control for W# to proceed.

W#
s,t = Ys,t − Y ′sXs,t −

(
Zs,t − Z ′sX̃s,t

)
=

∫ t

s
f(Yr)dXr − Y ′sXs,t − f(Y )′sXs,t + f(Y )′sXs,t +

∫ t

s
b1(r, Yr)dr

−
( ∫ t

s
f(Zr)dX̃r − Z ′sX̃s,t − f(Z)′sX̃s,t︸ ︷︷ ︸

:=E1

+f(Z)′sX̃s,t +

∫ t

s
b2(r, Zr)dr

)
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Now for Ξs,t = Y ′sXs,t + f(Y )′sXs,t, Ξ̃s,t = Z ′sX̃s,t + f(Z)′sX̃s,t we de�ne �s,t =
Ξs,t − Ξ̃s,t. Observe via Chen's relation that

δ�s,u,t = f(Z)#
s,uX̃u,t − f(Y )#

s,uXu,t + f(Z)′s,uX̃u,t − f(Y )′s,uXu,t

=⇒ |δ�s,u,t| ≤ wf(Y )#(s, t)
2
pwQ(s, t)

1
p − w∆#(s, t)

2
pwX̃(s, t)

1
p

+ wf(Y )′(s, t)
1
pwQ(s, t)

2
p − w∆′(s, t)

1
pwX̃(s, t)

2
p .

Now using the sewing lemma and the discussion in section 1.2 we get

|E1| =
∣∣∣∣∫ t

s
f(Yr)dXr −

∫ t

s
f(Zr)dX̃r − Ξs,t + Ξ̃s,t

∣∣∣∣
= |I(�)s,t − (�s,t)|

≤ C|wf(Y )#(s, t)
2
pwQ(s, t)

1
p − w∆#(s, t)

2
pwX̃(s, t)

1
p

+ wf(Y )′(s, t)
1
pwQ(s, t)

2
p − w∆′(s, t)

1
pwX̃(s, t)

2
p |.

Thus we need estimates for |f(Y )#
s,t|, |∆

#
s,t|, |∆′s,t| and |f(Y )′s,t|. Using the same

arguments as in Proposition 2.5 for these and combining them we get for s, t small
enough such that CwX̃(s, t) ≤ 1

2

|Ws,t| ≤ C

(
w1(s, t)

1
p sup
r∈[s,t]

|Wr|+ wQ(s, t)
1
p +

∫ t

s
krdr

)
. (2.12)

From here we proceed the same way as above in using the rough Grönwall with

w1 = wX(s, t) + wX̃(s, t) + |t − s| and w2(s, t) = wQ(s, t)
1
p +

∫ t
s krdr and induction

over the greedy partition steps to conclude with (2.10).
Again plugging this back into (2.12) yields (2.6).

Remark 2.7. We note that wQ(s, t)
1
p +

∫ t
s krdr in (2.12) is not a control which is

precisely the reason why we needed a slightly more general statement in the rough
Grönwall Lemma Proposition 1.7 than was provided in [10].

2.4 Well-Posedness

After having proven these a priori estimates we now show the existence and uniqueness
of solutions.

Theorem 2.8 (Well-posedness). Let X ∈ C p−var and g, f satisfy the assumptions
in Proposition 2.5. Then there exists a unique solution to equation (2.1) with initial
condition ξ ∈ Rd.

Proof. Uniqueness is a direct consequence of Proposition 2.6. Given two solutions
Y 1, Y 2 it follows from (2.10) that

∥∥Y 1, Y 2
∥∥
∞ = 0.

It is left to show existence of a solution. We proceed via Picard iteration. Let(
Y 0
t , (Y

0)′t
)

= (ξ + f(ξ)X0,t, f(ξ)) .

Note that this is indeed a path controlled by X since Y 0,#
s,t = 0 ∈ C

p
2
−var. Next we

de�ne the iteration by

(
Y n+1
t , (Y n+1)′t

)
=

(
ξ +

∫ t

0
g(r, Y n

r )dr +

∫ t

0
f(Y n

r )dXr, f(Y n
r )

)
.
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Again we note that this is a path controlled by X which can be seen by applying
Corollary 1.6. We now show that the sequence (Y n)n∈N de�ned this way is uniformly
bounded and equicontinuous to then apply Arzelà-Ascoli and pass to the limit. Specif-
ically we want to show inductively that there exist constants D,h independent of n

such that for all s, t satisfying wX(s, t)
1
p + |t− s| ≤ h we have

|Y n(s, t)| ≤ 5L|t− s|+ 5Cp,fwX(s, t)
1
p +DwX(s, t)

1
p ,

|Y n,#
s,t | ≤ 5L|t− s|+ 5Cp,fwX(s, t)

2
p +D2wX(s, t)

2
p .

(2.13)

Consider Y n+1. Without loss of generality we assume L ≥ 1 by setting L = L ∨ 1.
Then we have

|Y n+1
s,t | ≤ |

∫ t

s
g(r, Y n

r )dr|+ |f(Y n
s )Xs,t|+ |Df(Y n

s )f(Y n−1
s )Xs,t|

+ |
∫ t

s
f(Y n

r )dXr − f(Y n
s )Xs,t −Df(Y n

s )f(Y n−1
s )Xs,t|

≤ L|t− s|+ Cp,f

(
wX(s, t)

1
p + wX(s, t)

2
p + wY n(s, t)

1
pwX(s, t)

2
p

+ wY n(s, t)
2
pwX(s, t)

1
p + wY n,#(s, t)

2
pwX(s, t)

1
p

)
.

Again without loss of generality we assume Cp,f ≥ 1. Let's assume h ≤ 1
5Cp,f

√
L
.

Note that this implies h ≤ 1
5 . Plugging the induction hypothesis back in and using

wX(s, t)
1
p + |t− s| ≤ h we get

|Y n+1
s,t | ≤ L|t− s|+ 2Cp,fwX(s, t)

1
p + Cp,f

[ (
5L|t− s|h+ 2(5L|t− s|)2h2

)
wX(s, t)

1
p

+ wX(s, t)
1
p

(
5Cp,fh+ (5Cp,fh)2

)
+ wX(s, t)

1
p
(
(D + 2D2)h

) ]
≤ 5L|t− s|+ 5Cp,fwX(s, t)

1
p + wX(s, t)

1
pCp,fh(D + 2D2).

Now solving the quadratic inequality Ch(D + 2D2) ≤ D shows that the induction
hypothesis holds for a choice of D ≥ 1

2hCp,f
. The argumentation for |Y n+1,#

s,t | follows
the same steps which we chose to omit here.

This gives us equicontinuity and we can hence apply Arzelà-Ascoli. We get a
subsequence Y nk that converges uniformly to some Y in C([0, T ],Rd). Due to the
uniform bounds we can pass to the limit and get that (Y, f(Y )) is indeed a solution
to (2.1).
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Chapter 3

Mean Field Equations

3.1 Introduction

Let X be some random rough path on Re. We call a process described by an SDE of
the form

dYt = g(Yt,L(Yt))dt+ f(Yt,L(Yt))dXt (3.1)

a McKean-Vlasov process. Here L(Yt) ∈ P(Rd) denotes the law of Y at time t. For a
�xed law µ ∈ P(C([0, T ],Rd)) replacing L(Yt) with µt in (3.1) the dependence on the
law can be hidden in a time variable. This gives us

dY µ
t = gµ(t, Y µ

t )dt+ fµ(t, Y µ
t )dXt .

For this to have a solution in the sense of chapter 2 it is easy to see that we need fµ to
have �nite p

2 -variation in t. This kind of regularity does not hold in any generality for
measures µ. For a way to deal with this problem see [1] where a more sophisticated
approach is chosen involving bounding L-di�erentials of f in the law. Here we choose
to consider systems with f independent of the law. Since the conditions on gµ are only
measurability in t and we in fact get even continuity when imposing g to be Lipschitz
in the law, we can apply the techniques from chapter 2 to analyse this case.

Note that the exponential term eCN1(w1) in Proposition 2.5 and Proposition 2.6
plays a crucial role in limiting the type of input processes that we can handle.

We use the q-Wasserstein distance W (q) as a metric on the space of measures. For
a de�nition and a summary of properties we refer to Appendix A.

3.2 Classical Theory

Let us �rst review some classical results about McKean-Vlasov equations in the Itô
setting. Here it is possible to include dependence on the measure in the di�usion
term without relying on L-di�erentiation and other advanced techniques. We will use
the techniques of Itô calculus to derive existence and uniquess of a solution for the
McKean-Vlasov equation in this standard setting.

We will provide an overview over the argumentation for existence and uniqueness
of solution in the classical case. This is instructive since similar contractive arguments
are made in the rough case. For more details see [5].

In the following let (Ω,F ,F = (Ft)t∈[0,T ],P) be a �ltered probability space that
supports a e-dimensional standard Brownian motion (Wt)t∈[0,T ] with F satisfying
the usual conditions. We de�ne the Hilbert space of F-progressively measurable L2-
integrable processes as

L2
F(Rd) =

{
X : Ω→ Rd F-progressively measurable | E

[∫ T

0
|Xs|2ds

]
<∞

}
.
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Furthermore let S2
F(Rd) be the set of F-progressively measurable continuous processes

X such that E
[
‖X‖2∞

]
<∞.

We will consider the forward McKean-Vlasov SDE given by

dYt = g(t, ω, Yt,L(Yt))dt+ f(t, ω, Yt,L(Yt))dWt . (3.2)

Here we allow even for a dependence on ω in g, f since this simpli�es the argument.

Condition 1 (McKean-Vlasov SDE). Under the following assumptions we will see
that this system yields a unique solution.

1. For any �xed (y, µ) ∈ Rd × P2(Rd) the processes g(·, ·, y, µ) and f(·, ·, y, µ) lie
in L2

F(Rd) and L2
F(Rd×e).

2. There exists a Lipschitz constant L such that for any t ∈ [0, T ], ω ∈ Ω, y, y′ ∈ Rd
and µ, µ′ ∈ P2(Rd) we have

|g(t, ω, y, µ)− g(t, ω, y′, µ′)|+ |f(t, ω, y, µ)− f(t, ω, y′, µ′)|

≤L
(
|y − y′|+W (2)(µ, µ′)

)
.

Theorem 3.1. Let g, f satisfy Condition 1 and Y0 ∈ L2(Ω,F0,P;Rd) be a given initial
value. Then (3.2) has a unique solution (Yt)t∈[0,T ] ∈ SdF(Rd).

Proof. Fix some µ = (µt)t∈[0,T ] ∈ C([0, T ],P2(Rd)). By classical SDE solution theory
we then have a unique strong solution Y µ for

dY µ
t = g(t, ω, Y µ

t , µt)dt+ f(t, ω, Y µ
t , µt)dWt .

It is furthermore known that L(Y µ) ∈ P2(CT ). We introduce the map Φ associating
a law µ to the corresponding solution law, i.e.

Φ : C([0, T ],P2(Rd)) 3 µ 7→ (L(Y µ
t ))t∈[0,T ] ∈ C([0, T ],P2(Rd)).

It is easy to see that a process satisfying E
[
‖X‖2∞

]
< ∞ solves Equation 3.2 if and

only if its law is a �xed point of Φ. The latter is what we want to show.
Let now µ1, µ2 ∈ C([0, T ],P2(Rd)) be �xed. We can then apply Doob's maximal

inequality and Condition 1 to Y µ1 , Y µ2 to obtain

E

[
sup
r∈[0,t]

∣∣∣Y µ1 − Y µ2
∣∣∣2]

≤E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(
g(r, Y µ1

r , µ1
r)− g(r, Y µ2

r , µ2
r)
)
dr

∣∣∣∣
]

+ E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(
f(r, Y µ1

r , µ1
r)− f(r, Y µ2

r , µ2
r)
)
dWr

∣∣∣∣
]

≤C

(∫ t

0
E

[
sup
r∈[0,s]

|Y µ1

r − Y µ2

r |2
]
ds+

∫ t

0
W (2)(µ1

s, µ
2
s)

2ds

)
.
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Here C depends only on T, L and is non-decreasing in T . Hence by applying Grönwall's
inequality we conclude

sup
r∈[0,t]

W (2)(Φ(µ1)r,Φ(µ2)r)
2 ≤ E

[
sup
r∈[0,t]

∣∣∣Y µ1 − Y µ2
∣∣∣2] ≤ C ∫ t

0
W (2)(µ1

s, µ
2
s)

2ds.

Therefore for some k ∈ N large enough we get

sup
r∈[0,T ]

W (2)(Φk(µ1)r,Φ
k(µ2)r)

2 ≤ Ck
∫ T

0

∫ tk

0
. . .

∫ t2

0
W (2)(µ1

t1 , µ
2
t1)2dt1 . . . dtk

≤ CkT k

k!
sup
r∈[0,T ]

W (2)(µ1
r , µ

2
r)

2 ≤ 1

2
W (2)(µ1

r , µ
2
r)

2.

Hence for a k large enough Φk is a contraction. This implies that Φ is a contraction
on C([0, T ],P2(Rd)) and therefore has a unique �xed point which is the law of our
solution.

We will use this basic contractive argument in Proposition 3.6.

3.3 Rough setting

Let us now consider the rough case.
For some probability space (Ω,F ,P) and given initial condition ξ : Ω → Rd and

driver X : Ω→ C p−var([0, T ],Re) we consider equations of the form

dYt = g(t, Yt,L(Yt))dt+ f(Yt)dXt

Y0 = ξ
(3.3)

where L(Yt) denotes the law of Yt on Rd. As discussed above including a dependence
on L(Yt) in f is beyond the scope of this work and introduces many complexities. We
will assume the following condition for some q ≥ 1.

Condition 2. (L(q))
There exists a constant L such that for any t ∈ [0, T ], y1, y2 ∈ Rd, µ1, µ2 ∈ Pq(Rd)

we have

1. |g(t, y1, µ1)− g(t, y2, µ2)| ≤ L
(
|y1 − y2|+W (q)(µ1, µ2)

)
,

2. |g(t, y1, µ1)| ≤ L and

3. f ∈ C3
b .

Example 3.2. Let G : [0, T ] × Rd × Rd → Rd be a function such that for some
constant C we have

G(t, x, y) ≤ C, |G(t, x, y)−G(t, x′, y′)| ≤ L(|x− x′|+ |y − y′|).

Then g(t, x, µ) :=
∫
Rd G(t, x, y)dµ(y) satis�es Condition 2 (L(q)).

De�nition 3.3 (Solution). For an initial condition ξ : Ω → Rd and driver X : Ω →
C p−var([0, T ],Re) we say that a random variable Y : Ω → C([0, T ],Rd) is a solution
of (3.3) if (Y, Y ′)(ω) = (Y (ω), f(Y (ω))) is controlled by X(ω) for almost all ω ∈ Ω,
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for almost all t ∈ [0, T ] we have L(Yt) ∈ Pq(Rd) and the following integral equation is
satis�ed P-almost surely for all t ∈ [0, T ].

Yt(ω) = ξ(ω) +

∫ t

0
g(r, Yr(ω),L(Yr))dr +

∫ t

0
f(Yr(ω))dXr(ω).

For g, f satisfying Condition 2 (L(q)) we will call a solution Y a q-solution.

Note that clearly by replacing L(Yt) with a �xed law µ ∈ Pq(CT ) in (3.3) the
equation turns into an RDE with drift as discussed in chapter 2 and thus have a unique
pathwise solution given by (Y, Y ′) = (Y, f(Y )). We will denote the �rst component
of that solution by Y = Θg,f (µ, ξ,X).

We introduce the map

Ψ(q) : P(Rd × C p−var)× Pq(CT )→ Pq(CT )

L(ξ,X)× µ 7→ L(Θg,f (µ, ξ,X)) = [Θg,f (µ, ·, ·)]#L(ξ,X).

For m ∈ Pq(Rd × C p−var) we will write Ψ
(q)
m for Ψ(q)(m, ·) and omit the upper index

q when q = 1.

Lemma 3.4. Y is a solution to (2.1) if and only if L(Y ) is a �xed point of Ψ
(q)
L(ξ,X).

Proof. If Y solves (2.1) then for µ = L(Y ) we have Y = Θg,f (µ, ξ,X) and thus L(Y )
is a �xed point of ΨL(ξ,X).

On the other hand let µ be a �xed point of ΨL(ξ,X). Then as seen before Y =
Θg,f (µ, ξ,X) has �nite q-th moment and solves (2.1).

For a measure µ on C([0, T ],Rd) we will at times consider its restriction µ
∣∣
[0,t]
∈

P(C([0, t],Rd)). We will then write

W
(q)
t (µ1, µ2) := W

(q)

C([0,t],Rd)
(µ1
∣∣
[0,t]

, µ2
∣∣
[0,t]

).

When there is no confusion we will just write Wt := W
(1)
t .

Note that clearly by Lemma A.2 we get for any µ1, µ2 ∈ Pq(C([0, T ],Rd)) that

W
(q)
t (µ1, µ2) is non-decreasing in t and that for any t ∈ [0, T ] we have W (q)

Rd (µ1
t , µ

2
t ) ≤

W
(q)
t (µ1, µ2). Furthermore it can be seen that W (q)

t (µ1, µ2) is continuous in t.

3.4 Existence of solution

In Proposition 2.5 and Proposition 2.6 we saw contractive bounds with linear factors
in the input terms. We will use these to obtain a contractive property for the map
Ψm and thus the existence of a solution. Since these estimates feature the exponential
term eCN1(wX ,[0,T ]) we will require this to be integrable for all constants C. Hence for
the law of the input noise we will need to assume that the accumulated local variation
is exponentially integrable in the following sense.

Condition 3. Let ν ∈ P(C p−var
g ([0, T ],Re)). We assume that for the measure de�ned

by [N1(w·, [0, T ])]∗(ν) all exponential moments exist. That is for any θ ∈ R we have∫
C p−var

eθN1(wX,[0,T ])dν(X) <∞.
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We denote by E the set of all measures ν satistying Condition 3 and by Eq0 the
set of measures in P(Rd×C p−var([0, T ],Re)) for which the �rst marginal is in Pq(Rd)
and the second marginal in E .

We note that if for a random variable X : Ω→ C p−var
g we have L(X) ∈ E then by

Lemma 1.8 every moment exists for |||X|||p−var. Indeed

E
[
|||X|||qp−var

]
≤ C

q
p
p E
[
e
q
p
CpN1(wX ,[0,T ])

]
<∞.

Remark 3.5. An example of processes with laws in E is worked out in [6]. Cass, Litterer
and Lyons consider continuous centered Gaussian processes X with i.i.d. components
(X1, . . . , Xe). The idea is to examine the rectangular increments of the covariance
function of X given by

RXi

(
s t
s′ t′

)
:= E

[
Xi
s,tX

i
s′,t′
]
.

Let there exist some % ∈ [1, 3
2) and M < ∞ such that for all 0 ≤ s ≤ t ≤ T and

i ∈ {1, . . . e} we have
‖RXi‖%−var;[s,t]2 ≤M |t− s|

1
% .

Then one can show [15, Theorem 10.4] that X then has a natural geometric rough
path lift X = (X,X) given by the L2-limit

Xi,js,t := lim
|π|→0

∫
π
(Xi

r −Xi
s)dX

j
r .

Furthermore the Gaussian nature of X is leveraged to show that the associated
Cameron-Martin space H can be embedded via

H ↪→ Cq−var([0, T ],Re).

Arguments using a generalized Fernique theorem then provide for any such constructed
random rough path X a concentration inequality showing that for some C > 0 we
have

E
[
eCN1(wX ,[0,T ])

2
%

]
<∞. (3.4)

In particular this ensures X ∈ E . This class of processes contains fractional Brownian
motion with Hurst parameter H > 1

4 since there % can be chosen such that 2
% > 1.

We are now interested in existence of solutions for the McKean-Vlasov equation.

Proposition 3.6. Let ν ∈ E, p ∈ [2, 3) and q ≥ 1. Let (ξ,X) : Ω → Rd ×
C p−var
g ([0, T ],Re) be a random variable on some probability space (Ω,F ,P) with pro-

jected laws L(ξ) = u0, L(X) = ν and joint law L(ξ,X) = m ∈ Eq0 . Let f, g satisfy
(L(q)). Then there exists a unique pathwise solution Y to equation (3.3).

Furthermore L(Y ) depends only on L(ξ,X) and not the random variables them-
selves.

Proof. Let µ1, µ2 ∈ Pq(CT ) be two measures. We de�ne

Y i = Θg,f (µi, ξ,X) for i = 1, 2.
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Note that due to Corollary 2.4 for any such Y i we have

E
[∥∥Y i

∥∥q
∞

]
≤ C

(
E [ξq] + E

[
|||X|||pqp−var,[0,T ]

]
+ T q

)
<∞.

Namely any such Y i is integrable, i.e L(Y i) ∈ Pq(CT ) and thus L((Y i)t) ∈ Pq(Rd).
Let's now consider the di�erence between the Yi's. In the context of Proposition 2.5

we have kr = W
(q)

Rd (µ1
r , µ

2
r) resulting in

∥∥Y 1 − Y 2
∥∥
∞ ≤ Ce

CN1((wX+wid,[0,T ]))

∫ T

0
W (q)(µ1

r , µ
2
r)dr.

For the purposes of simpler notation we will simply write Ψm for Ψ
(q)
m . By integrating

both sides taken to the power of q we get

W
(q)
T (Ψm(µ1),Ψm(µ2)))q ≤ E

[∥∥Y 1 − Y 2
∥∥q
∞
]

≤ CE
[
eqCN1((wX+wid,[0,T ]))

](∫ T

0
W

(q)

Rd (µ1
r , µ

2
r)dr

)q
≤ C̃

∫ T

0
W (q)
r (µ1, µ2)qdr.

Recall that C̃ <∞ is guaranteed since ν ∈ E .
Applying the map k times we use monotonicity of t 7→Wt(µ

1, µ2) to get

W
(q)
T (Ψk

m(µ1),Ψk
m(µ2)))q ≤ C̃k

∫ T

0

∫ tk

0
. . .

∫ t2

0
W

(q)
t1

(µ1, µ2)qdt1 . . . dtk

≤ C̃k

k!
W

(q)
T (µ1, µ2)q = akW

(q)
T (µ1, µ2)q.

Due to the asymptotics of the factorial compared to polynomial growth we can pick a
k large enough such that ak ≤ 1

2q . Since the metric space (CT , ‖·‖∞) is complete and
separable, we know that (Pq(CT ),W (q)) is also complete and separable (See e.g. [3]).
Thus we can apply Banach's �xed point theorem which gives us a unique �xed point
for Ψk

ν . Let's denote that �xed point by µ. We then have

W
(q)
T (Ψm(µ), µ) = W

(q)
T (Ψk

m(Ψν(µ)),Ψk
ν(µ)) ≤ 1

2
W

(q)
T (Ψν(µ), µ).

Therefore W (q)
T (Ψm(µ), µ) = 0 and hence µ is a �xed point of Ψm. It is trivially

unique due to the uniqueness of �xed point in Ψk
m.

By Lemma 3.4 this corresponds to a unique solution Y = Θg,f (µ, ξ,X).

We note that any such measure µ that is a �xed point of Ψm has mass 0 outside
paths of �nite p-variation.

Remark 3.7. We used Condition 3 to ensure that the estimates in Proposition 2.5
yield that the di�erence between two solutions Y1, Y2 is integrable. We remind the
reader that originally (see e.g. [16, Theorem 12.10]) contractive estimates of this type
featured the term

eC|||X|||
p
p−var (K)

where K is Lipschitz in the di�erence of input noise, starting position and vector �eld
changes. This is of limited use for our purposes since eC|||X|||

p
p−var is not integrable for



3.5. Continuity In Input Driver 27

most processes that are of interest. In fact even for a lifted Brownian motion B we

have E
[
e|||B|||

p
p−var

]
= ∞ for any p > 2. The trouble here comes from the pathwise

approach being forced to make worst-case estimates for every ω and the global in time
estimates not being very strong.

The intuition for improving this via the greedy partition as above comes from
observing that for f ∈ C2

b we have in analog to Corollary 2.3 that∣∣∣∣∫ T

0
f(X)dX

∣∣∣∣ ≤ C ∣∣∣|||X|||p−var,[0,T ] ∨ |||X|||
p
p−var,[0,T ]

∣∣∣
and thus for the greedy partition constructed for X given by π = (ti) we have the
following∣∣∣∣∫ T

0
f(X)dX

∣∣∣∣ ≤ ∑
[τi,τi+1]∈π

∣∣∣∣∫ τi+1

τi

f(X)dX

∣∣∣∣
≤ (N1(wX , [0, T ]) + 1) sup

i

(
|||X|||p−var,[τi,τi+1] ∨ |||X|||

p
p−var,[τi,τi+1]

)
≤ (N1(wX , [0, T ]) + 1).

This is indeed the motivation for the introduction of N1(wX , [0, T ]).
The superior integrability estimates become relevant due to the authors of [6]

providing a large class of processes for which eCN1(wX ,[0,T ]) is in fact integrable. These
are Gaussian processes that have natural rough lifts. This class includes fractional
brownian motion with Hurst parameter H > 1

4 .

3.5 Continuity In Input Driver

It is a natural question to ask whether the solution map to the McKean-Vlasov equa-
tion is continuous with respect to the Wasserstein distance. We will see this to be the
case for a set of measures for which the exponential moments are uniformly bounded.

To this end for any monotone increasing function K : (0,∞) → (0,∞) we de�ne
a subset of P(C p−var

g (Rd)) by

E(K) = {ν ∈ P(C p−var
g (Re)) | ∀θ ∈ R :

∫
C p−varg

eθN1(wX),[0,T ]dν(X) ≤ K(θ)}.

Furthermore for q ≥ 1 let Eq0 (K) be the set of measures m in P(Rd × C p−var
g ) for

which the �rst marginal is in Pq(Rd) and the second marginal is in E(K).
Our input measure ν being in E(K) ensures integrability of the exponential term

that arises in the stability estimates from section 2.3. Note that L(X) ∈ E(K) gives
us bounds on the moments of |||X|||p−var. Indeed by Lemma 1.8 we obtain

E
[
|||X|||qp−var

]
≤ 2qe

pq
e E
[
e
qp
e
N1(wX ,[0,T ])

]
≤ 2qe

pq
e K

(qp
e

)
.

Remark 3.8. It can be seen that E(K) is a closed set in P(C p−var(Re)) with respect
to weak convergence of measures.
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Indeed let (νn) ⊂ E(K) weakly converge to some measure ν. We will write fθ(x) =
eθN1(wx,[0,T ]). Then for all M, θ ∈ (0,∞)∫

fθ ∧Mdνn
n→∞−−−→

∫
fθ ∧Mdν

by weak convergence and thus
∫
f ∧Mdν ≤ K(θ). Further by monotone convergence

we get ∫
fθ ∧Mdν

M→∞−−−−→
∫
fθdν.

This gives us
∫
fθdν ≤ K(θ) for all θ.

We have shown that given a measure m ∈ Eq0 (K) and functions f, g satisfying

Condition 2 (L(q)) the function Ψ
(q)
m (·) has a unique �xed point. We de�ne the �xed

point map

Ξ(q) : Eq0 (K)→ Pq(CT )

m 7→ �xed point of Ψ(q)
m (·)

and now want to show its continuity.

Proposition 3.9. Let K be a monotone increasing function. Assume that the laws
(νn)n∈N ⊂ Eq(K) converge weakly to ν∞ and (un)n∈N ⊂ Pq(Rd) converge in W (q) to
u∞. Let mn = un × νn and µn := Ξ(mn) for all n ∈ N ∪ {∞}. Then we have

W (q)(µn, µ∞)
n→∞−−−→ 0.

Proof. First note that due to the closedness of Eq0 (K) we know that m∞ also lies
in Eq0 (K). Furthermore C p−var

g and Rd are separable. Therefore m∞ has separable
support and we can use Skorokhod's representation theorem. This gives us existence
of a probability space (Ω,F ,P) hosting random variables ξn,Xn with laws L(ξn) =
un,L(Xn) = νn including n = ∞. Furthermore we have independence between ξn

and Xn and almost sure convergence

ξn
P−a.s.−−−−→ ξ∞, Xn P−a.s.−−−−→ X∞.

For µn = Ξ(mn) we de�ne the random variables Y n := Θg,f (µn, ξn,Xn), again in-
cluding n =∞.

Since µn is given by the �xed point map, we have L(Y n) = Ψmn(µn) = µn and
Y n is a solution to the McKean-Vlasov equation with inputs ξn,Xn.

Our previous contraction estimates Proposition 2.6 give us

‖Y n − Y∞‖∞ ≤
(
|ξn − ξ∞|+ |||Xn −X∞|||p−var,[0,T ] +

∫ T

0
W (µnr , µ

∞
r )dr

)
× C1e

C1N1(wX∞+wXn+wid,[0,T ]). (3.5)

Let us note that the assumption νn ∈ E(K) and an application of Hölder's inequality
imply

E
[
eCN1(wX∞+wXn+wid,[0,T ])

]
≤ E

[
CeCT eCN1(wX∞ )eCN1(wXn )

]
≤ CeCTK(2C).
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Using this and integrating both sides of (3.5) we obtain

W
(q)
T (µn, µ∞)q ≤ C2

∫ T

0
W (q)
r (µn, µ

∞)qdr + C1an + C1bn (3.6)

with

an = E [An] = E
[
eqC1N1(wX∞+wXn+wid,[0,T ])|||Xn −X∞|||qp−var

]
,

bn = E [Bn] = E
[
eqC1N1(wX∞+wXn+wid,[0,T ])|ξn − ξ∞|q

]
.

Due to the independence of ξn and Xn for all n we have

bn ≤ C3E [|ξn − ξ∞|q] n→∞−−−→ 0.

Here we used the fact that W (q)(un, u∞)
n→∞−−−→ 0 implies uniform integrability of the

p-th moment by Proposition A.3. This combined with pointwise convergence gives us
convergence in Lq.

On the other hand we can use Lemma 1.8 to get

|||Xn −X∞|||p−var ≤ 2(wXn + wX∞)(0, T )
1
p

≤ C4e
C4N1(wXn+wX∞ ,[0,T ])

≤ C4e
C4N1(wX∞ ,[0,T ])eC4N1(wXn ,[0,T ]).

Using this we get the following estimate for An.

An ≤ C5e
C1N1(wX∞+wXn+wid,[0,T ])eC4N1(wX∞ ,[0,T ])eC4N1(wXn ,[0,T ])

≤ C6e
C6N1(wX∞ ,[0,T ])eC6N1(wXn ,[0,T ]) =: Dn

Dn is integrable as seen by applying Hölder's inequality and our assumption νn, ν∞ ∈
E(K). Furthermore E [Dn] ≤ C6K(2C6). This implies that (Dn)n∈N is uniformly
integrable and therefore we get an

n→∞−−−→ 0.
Going back to (3.6) we now apply the Grönwall inequality as before to get

W
(q)
T (µn, µ∞)q ≤ C(an + bn)eCT

n→∞−−−→ 0

which implies weak convergence as seen in Proposition A.3.

By using a higher power Wasserstein distance we even get Lipschitz continuity of
the solution map.

Proposition 3.10. Let q > q′ ≥ 1, K be a monotone increasing function and f, g
satisfy Condition 2 (L(q′)). Then the solution map

Ξ(q,q′) : Eq0 (K)→ Pq′(CT )

m 7→ �xed point of Ψ(q)
m (·)

is Lipschitz continuous. That is there exists a universal constant L depending on
K, p, q, g, f such that for any two measures m1,m2 ∈ Eq0 (K) and µi := Ξ(q,q′)(mi),
i = 1, 2 we have

W
(q′)
CT

(µ1, µ2) ≤ LW (q)

Rd×C p−var
(m1,m2).
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Proof. Let (ξ1,X1), (ξ2,X2) be random variables with laws m1,m2. Again we can
de�ne Y i = Θg,f (µi, ξi,Xi), i = 1, 2. Let πo ∈ Π(m1,m2) be an optimal coupling, i.e.

W (q)(m1,m2)q = Eπo
[
|ξ1 − ξ2|q +

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣q
p−var

]
.

By de�nition of µi we then have L(Y i) = µi. Using again Proposition 2.6 we get

∥∥Y 1 − Y 2
∥∥
∞ ≤

(
|ξ1 − ξ2|+

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣
p−var,[0,T ]

+

∫ T

0
W (q′)(µ1

r , µ
2
r)dr

)
× CeCN1(wX1+wX2+wid,[0,T ]).

Taking expectations we again get

W
(q′)
T (µn, µ∞)q

′ ≤ C2

∫ T

0
W (q′)
r (µn, µ

∞)q
′
dr + Can (3.7)

with

an = Eπo
[
eCN1(wX1+wX2+wid,[0,T ])

(
|ξ1 − ξ2|+

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣
p−var

)q′]
.

Let now q̃ and q
q′ be a Hölder pair, i.e.

1
q̃ + q′

q = 1. Then we can use Hölder's inequality
to get

an ≤ Eπo
[
eq̃CN1(wX1+wX2+wid,[0,T ])

] 1
q̃ Eπo

[(
|ξ1 − ξ2|+

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣
p−var

)q] q′q
≤ CK(C)Eπo

[
|ξ1 − ξ2|q +

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣q
p−var

] q′
q
.

Using Grönwall's inequality in (3.7) gives us

W
(q′)
T (µn, µ∞) ≤ CEπo

[
|ξ1 − ξ2|q +

∣∣∣∣∣∣X1 −X2
∣∣∣∣∣∣q
p−var

] 1
q

= CW
(q)

Rd×C p−var
(m1,m2)

which is the claimed result.

The following proposition applies standard arguments to show that progressive
measurability from the input driver transfers to the solution.

Proposition 3.11. Let (Ft)t∈[0,T ] be a right-continuous complete �ltration on

(Ω,F ,P). Let ξ be F0-measurable and X : Ω× [0, T ]→ G(2)(Re) an (Ft)-progressively
measureable process with their respective laws satisfying the existence conditions in
Proposition 3.6 for some q ≥ 1. Then the q-solution Y to (3.3) is also (Ft)-
progressively measurable.

Proof. Let L(Y ) = µ. For a �xed t ∈ [0, T ] it is clear that Y
∣∣
[0,t]

satis�es

Y
∣∣
[0,t]

= Θg,f,[0,t](µ
∣∣
[0,t]

, ξ,X
∣∣
[0,t]

).

Since Θg,f,[0,t](µ
∣∣
[0,t]

, ·, ·) is B(Rd) × B(C p−var([0, t],Re))-measurable, we have that

Y
∣∣
[0,t]

is Ft-measurable because ξ,X
∣∣
[0,t]

are Ft-measurable. Thus Yt is Ft-measurable.
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Hence Y is adapted and therefore progressively measurable due to the continuity of
its paths.

Non-geometric drivers

So far we have considered input drivers only in the space of geometric rough paths.
The space C p−var

g ([0, T ],Re) is separable and closed under %p−var thus resulting in
(Pq(C p−var

g ),W (q)) being separable and closed allowing us to use the �xed point
arguments above. Furthermore geometric paths allow us to write |||X|||p−var as
supπ∈Π([0,T ])

∑
(ti)=π

dCC(Xti ,Xti+1)p thus enabling easy moment estimates on E via
Lemma 1.8. This eliminates the need to impose more moment constraints on the
input driver. It is however possible to extend our above results to the case of general
rough paths by reducing the problem to the case we have studied.

We call any p-rough path satisfying the �rst order chain rule condition

Sym(Xs,t) =
1

2
Xs,t ⊗Xs,t (3.8)

a weakly geometric rough path and denote the space of all such paths by

C p−var
wg ([0, T ],Re) ⊂ C p−var([0, T ],Re).

A simple application of partial integration shows that any lifted smooth path satis�es
(3.8) giving us the straight forward inclusion C p−var

g ([0, T ],Re) ⊂ C p−var
wg ([0, T ],Re).

As was shown in [19, Corollary 19], any path X ∈ Cp−var can be lifted to a
weakly geometric path X̄ for p ∈ (2, 3). We denote this lift as X̄ = L(X). Note that
this is not guaranteed to be unique. For our case it is enough to just pick some lift
L(X) = (X, X̄).

Further it was shown in [14, Theorem 15] that any X ∈ C p−var
wg ([0, T ],Re) can

be approximated uniformly by smooth paths and their respective lifts Xn. Via an
interpolation argument one can show that this implies convergence

%q−var(X,X
n)

n→∞−−−→ 0

for any q such that 2 ≤ p < q < 3. (See e.g. [15, Exercise 2.9]). This implies
X ∈ C q−var

g .
From Chen's relation (1.3) it is apparent that the �rst level X determines its lift

X only up to the addition of increments of functions F ∈ C
p
2
−var([0, T ],Re × Re) i.e.

all second levels above a path X have the form Xs,t = X̄s,t + Ft − Fs.
Thus we have

C p−var([0, T ],Re) ∼=C p−var
wg ([0, T ],Re)⊕ C

p
2
−var([0, T ],Re × Re)

↪→C q−var
g ([0, T ],Re)⊕ C

p
2
−var([0, T ],Re × Re)

(3.9)

Furthermore for any (Y, Y ′) ∈ D
p
2
X it is easy to check that (Y, Y ′) ∈ D

p
2

X̄
. Therefore

we get the equality∫
Y dX = lim

|π|→0

∑
[u,v]∈π

YuXu,v + Y ′uXu,v =

∫
Y dX̄ +

∫
Y ′dF (3.10)

where X̄ = (X, X̄) and the second term is a Young integral.
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We now apply this to a rough McKean-Vlasov equation of the type

dYt = g(t, Yt,L(Yt))dt+ f(Yt)dXt

where X is a random variable with values in C p−var. By the above discussion for
almost all ω there exists a function F ∈ C

p
2
−var such that for the weakly geometric

lift X̄s,t = Xs,t + Ft − Fs we have

dYt = g(t, Yt,L(Yt))dt+ f(Yt)
′dFt + f(Yt)dX̄t

= g(t, Yt,L(Yt))dt+Df(Yt)f(Yt)dFt + f(Yt)dX̄t.

By now interpreting X̄ as a random variable with values in C q−var
g for some q > p we

can again apply the �xed point arguments above to get a solution.
In order to show existence and continuity here we need a more general version

of Proposition 2.5 and Proposition 2.6. It is clear how to extend these however to
include another drift term interpreted as a Young integral. We can follow the same
steps as above using the Young integral inequality∣∣∣∣∫ t

s
ZrdFr − ZsFs,t

∣∣∣∣ ≤ C (wZ(s, t)
1
qwF (s, t)

2
q

)
.

This is a direct analog to Corollary 1.6 and provides combined with the arguments in
Proposition 2.6 estimates of the type∥∥Y 1 − Y 2

∥∥
∞,[s,t] ≤ Ce

CN1(w1,[s,t])
(∣∣Y 1

s − Y 2
s

∣∣+ wF 1−F 2(s, t)
2
p + wX̄1−X̄2(s, t)

1
p

)
for the two processes Y i = Θg,f (µi, ξi,Xi). Existence of a �xed point for the map

Ψ
(q)
m (·) follows immediately. Furthermore the following continuity result can be shown.

Proposition 3.12. Let q > q′ ≥ 1, K be a monotone increasing function and f, g
satisfy Condition 2 (L(q′)). We denote by Eq2 the space of measures on (C

p
2
−var×Rd×

C p−var) for which the projection to the last two variables lies in Eq0 and for the second
marginal µ2 ∫

C
p
2−var

eCN1(wx,[0,T ])dµ2(x) < K(C)

holds for any C. Then for the solution map

Ξ(q,q′) : Eq2 (K)→ Pq′(CT )

m 7→ �xed point of Ψ(q)
m (·)

there exists a constant L such that for any m1,m2 ∈ Eq2 (K) and µi := Ξ(q,q′)(mi) we
have

W
(q′)
CT

(µ1, µ2) ≤ LW (q)

C
p
2−var×Rd×C p−var

(m1,m2).

Proof. The proof is an elementary adjustment of the one of Proposition 3.10.

Our results could potentially also be extended to geometric processes with jumps
using the integration theory developed in [13]. It is however not clear if there exists a
rich class of processes with jumps that satisfy the appropriate integrability conditions.
This remains to be seen in future work.
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Chapter 4

Applications

The main applications for equations of McKean-Vlasov type come from approximating
interacting particle systems. In our case we consider a system of N particles with the
following dynamics

dY i,N
t = g(t, Y i,N

t ,
1

N

N∑
j=1

δ
Y j,Nt

) + f(Y i,N
t )dXi

t , ∀i ∈ {1, . . . , N}. (4.1)

We will see how to consider these systems as McKean-Vlasov equations themselves and
show propagation of chaos results as well as estimates for a strong rate of convergence.

4.1 Particle Approximations

The goal of this section is to examine the particle systems associated with McKean-
Vlasov equations. We will see how the existence and stability results from chapter 3
can be applied to interpret the particle systems as their corresponding McKean-Vlasov
equation and to get propagation of chaos results.

Let now (ξ,X), (ξi,Xi)i∈N be a family of random variables with values in(
Rd × C p−var

g

)
on some probability space (Ω,F ,P) and consider the system of parti-

cles given by {
dY i,N

t = g(t, Y i,N
t , 1

N

∑N
j=1 δY j,Nt

)dt+ f(Y i,N
t )dXi

t

Y i,N
0 = ξi.

(4.2)

This is the natural interacting particle approximation to the McKean-Vlasov equation{
dYt = g(t, Yt,L(Yt))dt+ f(Yt)dXt

Y0 = ξ.
(4.3)

We will now examine how to interpret the interacting particle system (4.2) as a
McKean-Vlasov equation.

Let Y (N) = (Y 1, . . . , Y N ) be an N -tuple with entries in some metric space E. We
de�ne the empirical measure associated with it as

L(N)(Y (N)) =
1

N

N∑
i=1

δYi .

For a given N ∈ N we introduce the probability space (ΩN ,FN ,PN ) given by ΩN =
{1, . . . , N}, FN = 2ΩN and PN = 1

N

∑N
i=1 δi. This is just the uniformly distributed

space on {1, . . . , N}. AnyN -tuple (Y 1, . . . , Y N ) can now be interpreted as the random
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variable Y (N)
e : i 7→ Y i. This identi�cation gives us

L(Y (N)
e ) = L(N)(Y (N)).

Now for our given input family (ξi,Xi)i∈N and an N ∈ N we de�ne for all ω ∈ Ω the
random variables

ξ(N)(ω) =
(
ξ1(ω), . . . , ξN (ω)

)
X(N)(ω) =

(
X1(ω), . . . ,XN (ω)

)
.

Then for a �xed ω ∈ Ω the particle system (4.2) is a McKean-Vlasov equation for
a random variable Y (N) : ΩN → CT with inputs (ξ(N)(ω),X(N)(ω)).

Let's �rst review a simple lemma about convergence of empirical measures.

Lemma 4.1. Let q ≥ 1 be given. Let (Xi)i∈N be a family of i.i.d. random variables
on some probability space (Ω,F ,P) taking values in a separable metric space (E, d)
with law ν such that

∫
E d(x0, x)qdν(x) < ∞ for some and thus for all x0 ∈ E. Let

νN (ω) = 1
N

∑N
i=1 δXi(ω) for ω ∈ Ω be the empirical law of X(N) = (X1, . . . , XN ).

Then we have
Wq,E(νN , ν)

N→∞−−−−→ 0 P-a.s.

Proof. We denote by B the Borel sigma algebra on (E, d). By the strong law of large
numbers we know that for any B ∈ B there exists a set Ω0(B) with P(Ω0(B)) = 1
such that

νN (ω)(B) =
1

N

N∑
i=1

1Xi(ω)∈B
N→∞−−−−→ ν(B) ∀ ω ∈ Ω0(B).

To show that the exception set can be chosen independently of B let D be a countable
dense subset of E. Let G = {B 1

n
(x) | x ∈ D,n ∈ N}, where Bε(x) denotes the open ε

ball around x. Every open set in E can be represented as a union of elements in G.
Now let Gf be the set of �nite intersections of elements in G. Since Gf is countable,
we have

P(
⋃
A∈Gf

Ωc
0(A)) ≤

∑
A∈Gf

P(Ωc
0(A)) = 0.

This gives us

νN (w)(A)
N→∞−−−−→ ν(A) ∀ ω 6∈

⋃
A∈Gf

Ωc
0(A)

Since Gf generates the borel sigma algebra B this gives us

νN (ω) =⇒ ν a.s.

Furthermore for any element x0 ∈ E we can apply the strong law of large numbers to
the i.i.d. random variables (d(x0, X

i))i∈N to get for almost all ω∫
E
d(x0, x)qdνN (ω)(x) =

1

N

N∑
i=1

d(x0, X
i(ω))q

N→∞−−−−→
∫
E
d(x0, X)qdν <∞.

Thus by Corollary A.4 we get convergence in W (q).

We now use this to show that the solution to the particle approximation converges
in the Wasserstein distance to the associated McKean-Vlasov solution.
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Theorem 4.2. Let q ≥ 1, K : (0,∞)→ (0,∞) be given and g, f satisfy Condition 2
(L(q)). Let (ξ,X), (ξi,Xi)i∈N be a set of i.i.d. random variables with values in (Rd ×
C p−var
g (Re)) and law m ∈ Eq0 (K) with marginals (u0, ν). Then for the solution Y (N)

to the particle system (4.2) we have

W (q)
(
LN (Y (N)),L(Y )

)
N→∞−−−−→ 0 P-a.s.

Proof. Let us name the laws of the solutions to our systems µN := LN (Y (N)) =
1
N

∑N
i=1 δY i,N and µ := L(Y ). We introduce the random variables given by Y i =

Θg,f (µ, ξi,Xi). Note that since (ξn,Xn) are i.i.d. copies of (ξ,X) and the law of
solutions only depends on the law of the input this gives us L(Y i) = µ for all i. Hence
all the Y i's are independent copies of solutions to the McKean-Vlasov equation.

We can now apply our contraction estimate Proposition 2.5 with kr =
W (q)(µNr , µr) to get the P-almost sure estimate

∥∥Y i,N − Y i
∥∥
∞ ≤ Ce

CN1(wXi ,[0,T ])

∫ T

0
W (q)
r (µN , µ)dr.

By denoting the empirical law of (Y 1, . . . , Y N ) as µ̄N := 1
N

∑N
i=1 δY i and noting the

general inequality for discrete laws

W (q)

(
N∑
i=1

δai ,
N∑
i=1

δbi

)
≤

(
1

N

N∑
i=1

‖ai − bi‖q
) 1

q

we obtain

W
(q)
T (µ̄N , µN )q ≤ C

(∫ T

0
W (q)
r (µN , µ)dr

)q
1

N

N∑
i=1

eqCN1(wXi ,[0,T ]).

Using this we can split our computation in the following way.

W
(q)
T (µ, µN ) ≤W (q)

T (µ, µ̄N ) +W
(q)
T (µ̄N , µN )

≤W (q)
T (µ, µ̄N ) + C

∫ T

0
W (q)
r (µ, µN )dr

(
1

N

N∑
i=1

eCN1(wXi ,[0,T ])

) 1
q

.

Thus by using the Grönwall lemma we get

W
(q)
T (µ, µN ) ≤ CW (q)

T (µ, µ̄N )e
TC
(

1
N

∑N
i=1 e

CN1(wXi
,[0,T ])

) 1
q

.

By Lemma 4.1 we know that P-almost surely WT (µ, µ̄N )
n→∞−−−→ 0. Furthermore we

have by the law of large numbers that(
1

N

N∑
i=1

eCN1(wXi ,[0,T ])

) 1
q

N→∞−−−−→
(
E
[
eCN1(wX ,[0,T ])

]) 1
q
<∞ P-a.s.

This implies

W
(q)
T (µ, µN )

N→∞−−−−→ 0 P-a.s.
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An alternative way to prove the convergence of law of the particle approximations
to the law of the solution of the McKean-Vlasov equation is to use the Lipschitz
estimate in Proposition 3.10. We note that this is a slightly weaker result due to
the loss of Wasserstein power but include the proof since it is immediate from the
interpretation of the particle approximation as a McKean-Vlasov equation.

Theorem 4.3. Let q > q′ ≥ 1 and K : (0,∞) → (0,∞), q > 0 be given. Let
(ξ,X), (ξi,Xi)i∈N be a set of i.i.d. random variables with values in (Re×C p−var

g (Rd))
and law m with marginals (u0, ν) such that m ∈ Eq0 (K). Then for the solution to the
particle system Y (N) we have

W (q′)
(
LN (Y (N)),L(Y )

)
N→∞−−−−→ 0 P-a.s.

Proof. We �rst de�ne νN = 1
N

∑N
i=1 δXi . By the strong law of large numbers there

exists a Ω0 of zero mass such that for all ω 6∈ Ω0 we have∫
C p−varg

eθN1(wx,[0,T ])dνN (ω)(x) =
1

N

N∑
i=1

e
θN1(wXi(ω),[0,T ])

N→∞−−−−→ E
[
eθN1(wX ,[0,T ])

]
≤ K(θ) ∀θ ∈ (0,∞).

Thus we have that for any ω ∈ Ωc
0 there exists an N(ω) such that for all n > N(ω)

we have νn ∈ Eqg (2K).
We now apply Proposition 3.10 to the input random variables given by the inter-

pretation of (4.2) as a McKean-Vlasov equation

(ΩN ,FN ,PN ), (ξ(N),X(N))(ω) = (ξ(N)(ω),X(N)(ω))

(Ω,F ,P), (ξ,X)(ω) = (ξ(ω),X(ω)).

For all n > N(ω) we then have L((ξ(n),X(n))) ∈ Eq0,g(2K). Let the obtained solutions

to the corresponding McKean-Vlasov equations be Y and Y (n).
Then by Proposition 3.10 we get

W (q′)(L(Y ), L(n)(Y (n))) ≤ CW (q)(L(ξ,X), L(n)(ξ(n),X(n))) ∀n > N(ω)

and therefore by Lemma 4.1 the claim follows.

4.2 Rate Of Convergence

We now consider the rate of convergence of the particle approximation to the solution
to the McKean-Vlasov equation as the number of particles increases.

We �rst state [5, Theorem 5.8]. This gives us a rate of convergence in the 2-
Wasserstein metric for empirical measures on Rd. We will then apply this to our
setting to recover the same rate of convergence for the particle approximation.

Theorem 4.4. Let µ ∈ Pq(Rd) for some q > 4. Let µ̄N =
∑N

i=1 δXi be the N -th
empirical measure given by i.i.d random variables (Xi). Then there exists a constant
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C = C(d, q,
∫
Rd |x|

qdµ(x)) such that for all N ≥ 2 we have

E
[
W (2)(µ, µN )2

]
≤ CηN := C


N−

1
2 d < 4

N−
1
2 log(N) d = 4

N−
2
d d > 4.

Note that this can be generalized to any W (q) distance under existence of higher
moments by including some more terms. Notably for a measure µ for which high
enough moments exist we have

E
[
W (q)(µ, µN )q

]
≤ CηN . (4.4)

See [11] for more details. We skip the lenghty proof of this theorem and focus on
applying it to the setting of the particle approximation.

We recover the same rate of approximation leading us to believe that no better
result should be obtainable in this generality.

Theorem 4.5. Let (ξn,Xn)n∈N be i.i.d random variables with law m ∈ Eq0 (K) for
some function K : (0,∞)→ (0,∞) and q > 4. Let f ∈ C3

b and g satisfy

|g(t, y, µ)− g(t, y′, µ′)| ≤ L
(
|y − y′|+W (2)(µ, µ′)

)
,

|g(t, y, µ)| ≤ L.

For N ∈ N let Y i be the solution to the McKean-Vlasov equation (3.3) with input
(ξi,Xi) and Y i,N be the i-th entry of the solution to the particle system with input
(ξ(N),X(N)). Then there exists a constant C independent of N such that

sup
1≤i≤N

E
[∥∥Y i − Y i,N

∥∥2

∞,[0,T ]

]
≤ C


N−

1
2 d < 4

N−
1
2 log(N) d = 4

N−
2
d d > 4.

Proof. Let i,N be �xed for now and pick some q > 4. As always the constant C can
increase from line to line but we try to make clear what factors into it.

We have Yi = Θg,f (µ, ξi,Xi) and Y i,N = Θg,f (µN , ξi,Xi). Thus by Corollary 2.4
and Lemma 1.8 we have∥∥Y i − Y i,N

∥∥
∞,[0,T ]

≤
∥∥Y i

∥∥
∞ +

∥∥Y i,N
∥∥
∞

≤ C
(
|ξi|+

∣∣∣∣∣∣Xi
∣∣∣∣∣∣p
p−var + T

)
≤ C

(
|ξi|+ eCN1(wXi ,[0,T ]) + T

)
=: CM i.

(4.5)

Furthermore by Proposition 2.5 we have

∥∥Y i − Y i,N
∥∥
∞,[0,T ]

≤ CeCN1(wXi ,[0,T ])

∫ T

0
W (2)(µr, µ

N
r )dr.
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Therefore we can bound the expected value via

E
[∥∥Y i − Y i,N

∥∥2

∞

]
≤
∫ T

0
E
[
C2e2CN1(wXi ,[0,T ])W (2)(µr, µ

N
r )2
]
dr

≤
∫ T

0
CE

[
eCN1(wXi ,[0,T ])

(
W (2)(µr, µ̄

N
2 )2 +W (2)(µ̄Nr , µ

N
r )2
)]
dr

=

∫ T

0
C(T1 + T2)dr.

(4.6)

Here, as before we denote µ̄N =
∑N

i=1 δY i . We now bound the individual terms. Note
that since µNr , µ̄

N
r are both discrete measures we have

W (2)(µ̄Nr , µ
N
r ) ≤

(
1

N

N∑
i=1

|Y i
r − Y i,N

r |2
) 1

2

.

We use this to get

T2 ≤ E

[
eCN1(wXi ,[0,T ]) 1

N

N∑
i=1

|Y i
r − Y i,N

r |2
]

≤ 1

N
E
[
eCN1(wXi ,[0,T ])|Y i

r − Y i,N
r |2

]
+

1

N

∑
j 6=i

E
[
eCN1(wXi ,[0,T ])|Y j

r − Y j,N
r |2

]
≤ 1

N
E
[
eCN1(wXi ,[0,T ])(M i)2

]
+K(C)

1

N

∑
j 6=i

E
[
|Y j
r − Y j,N

r |2
]

≤ 1

N
E
[
CeCN1(wXi ,[0,T ])(|ξi|2 + 1 + T )

]
+K(C)

N − 1

N
E
[
|Y i
r − Y i,N

r |2
]

≤ 1

N
C

(
K(C) +K(C)E

[
|ξi|4

] 1
2

)
+K(C)E

[
|Y i
r − Y i,N

r |2
]

≤ C
(

1

N
+ E

[
|Y i
r − Y i,N

r |2
])

.

Furthermore we de�ne µ̄N,ir = 1
N

(
δY N+1
r

∑
j 6=i δY jr

)
. Note that µ̄rN,i is an empirical

measure for µr and thus Theorem 4.4 applies. We then have

T1 ≤ CE
[
eCN1(wXi ,[0,T ])

(
W (2)(µr, µ̄

N,i
r )2 +W (2)(µ̄N,ir , µ̄Nr )2

)]
≤ CK(C)E

[
W (2)(µr, µ̄

N,i
r )2

]
+ CE

eCN1(wXi ,[0,T ]) 1

N

|Y i
r − Y N+1

r |2 +
∑
j 6=i
|Y j
r − Y j

r |2


≤ CE
[
W (2)(µr, µ̄

N,i
r )2

]
+

1

N
CE

[
eCN1(wXi ,[0,T ])|Y i

r − Y N+1
r |2

]
≤ C

(
E
[
W (2)(µr, µ̄

N,i
r )2

]
+

1

N

(
K(C) +K(C)E

[
|ξi|4

] 1
2

))
≤ C

(
E
[
W (2)(µr, µ̄

N,i
r )2

]
+

1

N

)
.
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Plugging these estimates back into (4.6) we get

E
[∥∥Y i − Y i,N

∥∥2

∞,[0,T ]

]
≤
∫ T

0
C

(
1

N
+ E

[
W (2)(µr, µ̄

N,i
r )2

]
+ E

[
|Y i
r − Y i,N

r |2
])

dr.

Now applying Grönwall's inequality gives us

E
[∥∥Y i − Y i,N

∥∥2

∞

]
≤ C

(
1

N
+ sup
r∈[0,T ]

E
[
W (2)(µr, µ̄

N,i
r )2

])
eTC .

Note that since

sup
r∈[0,T ]

∫
Rd
|x|qdµr(x) = E

[∥∥Y 1
∥∥
∞
]

≤ C
(
E
[
|ξ1|q

]
+K(C) + 1

)
=: B <∞

we have a universal bound inpendent of r and can apply Theorem 4.4 with the constant
depending on B to obtain

E
[∥∥Y i − Y i,N

∥∥2

∞

]
≤ C

(
1

N
+ ηN

)
.

Since the right side does not depend on i we can take the supremum and the claim
follows.

Remark 4.6. This statement and proof can easily be adapted to

sup
1≤i≤N

E
[∥∥Y i − Y i,N

∥∥p
∞,[0,T ]

]
≤ CηN

if g is Lipschitz in the measure argument with respect to W (p) and high enough
moments exist for |ξi| and

∣∣∣∣∣∣Xi
∣∣∣∣∣∣
p−var. The proof follows the same steps and yields

the same result due to (4.4) and the existence of high enough moments.

We stress that Theorem 4.5 does not directly give us a rate of convergence for
W (2)(µ, µN ) as N →∞. It does however imply

W (2)(µ̄N , µN )2 ≤ 1

N

N∑
i=1

∥∥Y i − Y i,N
∥∥2

∞

≤ sup
1≤i≤N

E
[∥∥Y i − Y i,N

∥∥2

∞

]
≤ CηN

An approach to extend this to give us a rate of convergence for W (2)(µ, µN ) is to
get an approximation rate for W (2)(µ, µ̄N ) for measures µ ∈ P2(C([0, T ],Rd)). We are
not sure if the same rate holds. It seems to be an open problem.

For simulation purposes however this result is useful.

Remark 4.7. We expect a naive Euler approach of the type

Ȳ i,N,M
tk+1

= Ȳ i,N,M
tk

+ g
(
tk, Ȳ

i,N,M
tk

, µNtk

)
h+ f

(
Ȳ i,N,M
tk

)
∆Xi

tk

+Df
(
Ȳ i,N,M
tk

)
f(Ȳ i,N,M

tk
)∆Xitk
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for h = T
M to provide approximations with

sup
1≤i≤N

E
[∥∥∥Y i,N

t − Y i,N,M
t

∥∥∥2

∞

]
≤ Ch.

Combined with Theorem 4.5 this would directly result in

sup
1≤i≤N

E
[∥∥Y i − Y i,N,M

∥∥2

∞,[0,T ]

]
≤ C(ηN + h).

This still needs to be veri�ed in future work.
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Appendix A

Wasserstein Metric

A.1 De�nitions and Properties

There are several metrics on spaces of probability measures. In this work we chie�y use
the Wasserstein metric W because of its geometric properties and being particularly
well-suited to control functions of empirical measures. We will use this appendix to
remind the reader of some de�nitions, intuition and properties. As this is just a brief
overview some proofs will be skipped. For a more complete picture see [5].

Let (E, d) be a separable metric space equipped with the Borel σ-algebra E =
B(E). We denote for any p ≥ 1 by Pp(E) the space of probability measures on E
with �nite p-th moment. That is

Pp(E) =

{
µ ∈ P(E) :

∫
E
d(x0, x)pdµ(x) <∞ for some (and thus all) x0 ∈ E

}
.

Let µ, ν ∈ Pp(E). Then we de�ne their p-th Wasserstein distance by

W (p)(µ, ν)p := inf
π∈Π(µ,ν)

∫
E×E

d(x, y)pdπ(x, y) (A.1)

where Π(µ, ν) is the set of all couplings of µ and ν, i.e. probability measures on E×E
whose projections to the �rst and second coordinates are µ and ν respectively. Note
that for any µ, ν ∈ Pp(E) any coupling π is in Pp(E × E) with the metric being the
p-product metric. It is well known that the optimum is always achieved, i.e. there
exists a πo ∈ Π(ν, µ) such that W (p)(µ, ν)p =

∫
E×E d(x, y)pdπo(x, y).

It is known that W (p) is indeed a metric on Pp(E) and furthermore if (E, d) is
Polish, so is (Pp(E),W (p)). These are classical results.

Let (Ω,F ,P) be a probability space. Note that for any two random variables
X,Y : Ω→ E for which we have E [d(X,x0)p] + E [d(Y, x0)p] <∞ for some and thus
for all x0 ∈ E we have

W (p)(L(X),L(Y ))p ≤ E [d(X,Y )p] .

Furthermore if (Ω,F ,P) is atomless then for any law µ ∈ Pp(E) there exists a
random variable X on Ω with law µ. Therefore we can write

W (p)(µ, ν)p = inf
L(X)=µ,L(Y )=ν

E [d(X,Y )p] .

Another well-known property is the Kantorovich duality theorem. It is central in
the study of transportation theory. We include it here although we do not use it in
our work.
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Proposition A.1. Let (E, d) be a Polish space and p ≥ 1 and µ, ν ∈ Pp(E). Then

W (p)(µ, ν)p = sup
φ,ψ:φ(x)+ψ(y)≤d(x,y)p

(∫
E
φ(x)dµ(x) +

∫
E
ψ(x)dν(x)

)
An obvious property but one that we use throughout is monotonicity under pro-

jection.

Lemma A.2. Let µ, ν ∈ Pp(C([0, T ],Rd)) for some p ≥ 1 and T > 0. Then for any
0 ≤ s ≤ t ≤ T we have µ

∣∣
[s,t]
∈ Pp(C([s, t],Rd)) and

W (p)(µ
∣∣
[s,t]

, ν
∣∣
[s,t]

) ≤W (p)(µ, ν).

Here the projection to [t, t] is associated with just the marginal at time t.

Proof. It is clear that for any coupling π ∈ Π(µ, ν) the projection π
∣∣
[s,t]

lies in

Π(µ
∣∣
[s,t]

, ν
∣∣
[s,t]

). Let now πo be an optimal coupling in Π(µ, ν). We then have

W (p)(µ
∣∣
[s,t]

, ν
∣∣
[s,t]

)p ≤
∫ ∫

C[s,t]×C[s,t]

∥∥γ − γ′∥∥∞,[s,t] dπo∣∣[s,t](γ, γ′)
≤
∫ ∫

C[0,T ]×C[0,T ]

∥∥γ − γ′∥∥∞,[0,T ]
dπo
(
γ, γ′)

= W (p)(µ, ν)p

A.2 Weak Convergence

It is well known that weak convergence is metrized by the Lévy-Prokhorov metric.
Convergence in the p-Wasserstein metric adds convergence of the p-th moment as
condition in the following way.

Proposition A.3 (Wasserstein metric metrizes weak convergence). Let (E, d) be a
separable metric space. For some p ≥ 1 let (µn), µ be in Pp(E). Then

lim
n→∞

W (p)(µn, µ) = 0 ⇐⇒

{
µn =⇒ µ and∫
E d(x0, x)pdµn(x)

n→∞−−−→
∫
E d(x0, x)pdµ(x) ∀x0 ∈ E.

(A.2)

Proof. ⇒ :

Assume W (p)(µ, µn)→ 0 and let πn ∈ Πopt
p (µn, µ) be optimal p-couplings.
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We �rst show weak convergence µn =⇒ µ. For any bounded uniformly continuous
function f : E → R and any ε > 0 there exists a δ > 0 such that

An =

∫
E
f(x)dµ(x)−

∫
E
f(y)dµn(y)

=

∫
E×E

f(x)− f(y)dπn(x, y)

≤
∫
d(x,y)≤δ

|f(x)− f(y)|dπn(x, y) +

∫
d(x,y)>δ

|f(x)− f(y)|dπn(x, y)

≤ε+

∫
d(x,y)>δ

|f(x)− f(y)|dπn(x, y)
n→∞−−−→ ε.

Since we can choose ε arbitrarily small this gives us weak convergence µn =⇒ µ.
For the convergence of the moments we note that using the triangle inequality we

have ∣∣∣W (p)(µn, δx0)−W (p)(µ, δx0)
∣∣∣ ≤W (p)(µn, µ)

n→∞−−−→ 0.

It follows that∫
d(x, x0)pdµn(x) = W (p)(µn, δx0)p

n→∞−−−→W (p)(µ, δx0)p =

∫
d(x, x0)pdµ(x).

⇐ :
Let now the right hand side of (A.2) hold. By Skorokhod's representation theorem

we get random variables (Xn)n∈N, X with corresponding laws µn, µ converging almost

surely Xn P-a.s.−−−→ X. Using Fatou's lemma we see that µ ∈ Pp(E). Indeed∫
E
d(x0, x)pdµ(x) = E [d(x0, X)p]

≤ lim inf
n→∞

E [d(x0, X
n)p]

= lim inf
n→∞

∫
E
d(x0, x)pdµn(x).

For any r > 0 and An := E
[
d(x0, X

n)p1{d(x0,Xn)≥r}
]
we then get

lim inf
n→∞

An = lim inf
n→∞

(E [d(x0, X
n)p]− E [(d(x0, X

n) ∧ r)p] + rpP(d(x0, X
n) ≥ r))

≤ E [d(x0, X)p]− E [(d(x0, X) ∧ r)p] + rpP(d(x0, X) ≥ r)
= E

[
d(x0, X)p1{d(x0,Xn)≥r}

]
.

For r large enough this is clearly arbitrarily small giving us uniform integrability of
(d(x0, X

n)p)n∈N. Since we have almost sure convergence from Skorokhod's lemma this
is enough to show convergence in Lp. We can thus conclude the proof via

W (p)(µn, µ)p ≤ E [d(Xn, X)p]
n→∞−−−→ 0.

From this we get as a consequence a su�cient condition allowing us to pass from
weak convergence to convergence in W (p).
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Corollary A.4. Let (E, d) be a Polish space and (µn)n∈N, µ measures in Pp(E) for
some p ≥ 1. If µn converges weakly to µ as n→∞ and for some x0 ∈ E we have

lim
r→∞

sup
n∈N

∫
E
d(x0, x)p1{d(x0,x)≥r}dµ

n(x) = 0

then W (p)(µn, µ)
n→∞−−−→ 0.

Proof. By Skorokhod's representation theorem there exist random variables

X, (Xn)n∈N with laws µ, µn such that we have almost sure convergence Xn P−a.s.−−−−→ X.
For any r > 0 we then have

E [d(x0, X
n)p] ≤ E

[
d(x0, X

n)p1{d(x0,Xn)≥r}
]

+ E [(d(x0, X
n) ∨ r)p] .

Therefore we obtain

sup
n∈N

E [d(x0, X
n)p] ≤ E [d(x0, X)p] .

Thus we have uniform integrability of (d(x0, X
n))n∈N and since it converges almost

surely we have

lim
n→∞

E [d(x0, X
n)p] = E [d(x0, X)p] .

Convergence in W (p) follows by Proposition A.3.
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